精英家教网 > 高中数学 > 题目详情

【题目】某大学为调研学生在 两家餐厅用餐的满意度,从在 两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行评分,满分均为60分.

整理评分数据,将分数以10为组距分成6组: ,得到餐厅分数的频率分布直方图,和餐厅分数的频数分布表:

定义学生对餐厅评价的“满意度指数”如下:

分数

满意度指数

(Ⅰ)在抽样的100人中,求对餐厅评价“满意度指数”为0的人数;

(Ⅱ)从该校在 两家餐厅都用过餐的学生中随机抽取1人进行调查,试估计其对餐厅评价的“满意度指数”比对餐厅评价的“满意度指数”高的概率;

(Ⅲ)如果从 两家餐厅中选择一家用餐,你会选择哪一家?说明理由.

【答案】(I)人;(II);(III)详见解析.

【解析】试题分析:(1)对A餐厅“满意度指数”为0,是指分数在内,由频率分布直方图求出 内的频率,再求出人数;(2)分别求出对A,B餐厅评价“满意度指数”为0,1,2时的概率,对餐厅评价的“满意度指数”比对餐厅评价的“满意度指数”高包括:对餐厅评价的“满意度指数”为1,对B餐厅评价的“满意度指数”为0;对餐厅评价的“满意度指数”为2,对B餐厅评价的“满意度指数”为0;对餐厅评价的“满意度指数”为2,对B餐厅评价的“满意度指数”为1,由相互独立事件计算公式,求出结果;(3)从学生对A,B餐厅评价的“满意度指数”期望看,分别求出分布列,算出期望,得出结果.

试题解析:

(Ⅰ)由对餐厅评分的频率分布直方图,得

餐厅“满意度指数”为0的频率为

所以,对餐厅评价“满意度指数”为0的人数为.

(Ⅱ)设“对餐厅评价‘满意度指数’比对餐厅评价‘满意度指数’高”为事件.

记“对餐厅评价‘满意度指数’为1”为事件;“对餐厅评价‘满意度指数’为2”为事件;“对餐厅评价‘满意度指数’为0”为事件;“对餐厅评价‘满意度指数’为1”为事件.

所以

由用频率估计概率得: .

因为事件相互独立,其中 .

所以

所以该学生对餐厅评价的“满意度指数”比对餐厅评价的“满意度指数”高的概率为.

(Ⅲ)如果从学生对 两家餐厅评价的“满意度指数”的期望角度看:

餐厅“满意度指数”的分布列为:

餐厅“满意度指数”的分布列为:

因为

所以,会选择餐厅用餐.

注:本题答案不唯一.只要考生言之合理即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】孝感车天地关于某品牌汽车的使用年限(年)和所支出的维修费用(千元)由如表的统计资料:

2

3

4

5

6

2.1

3.4

5.9

6.6

7.0

(1)画出散点图并判断使用年限与所支出的维修费用是否线性相关;如果线性相关,求回归直线方程;

(2)若使用超过8年,维修费用超过1.5万元时,车主将处理掉该车,估计第10年年底时,车主是否会处理掉该车?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过200度的部分按0.5元/度收费,超过200度但不超过400度的部分按0.8元/度收费,超过400度的部分按1.0元/度收费.

(1)求某户居民用电费用(单位:元)关于月用电量(单位:度)的函数解析式;

2)为了了解居民的用电情况,通过抽样,获得了今年1月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图,若这100户居民中,今年1月份用电费用不超过260元的点80%,求的值;

(3)在满足(2)的条件下,估计1月份该市居民用户平均用电费用(同一组中的数据用该组区间的中点值作代表)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F1F2分别为双曲线的左、右焦点,P为双曲线右支上的任意一点,若的最小值为8a,则双曲线的离心率e的取值范围是(   )

A. (1,+∞) B. (1,2] C. (1,] D. (1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x>0,y>0,且x+y=1,求:
(1)x2+y2的最小值;
(2) + + 的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有三支股票 ,28位股民的持有情况如下:每位股民至少持有其中一支股票,在不持有股票的人中,持有股票的人数是持有股票的人数的2倍.在持有股票的人中,只持有股票的人数比除了持有股票外,同时还持有其它股票的人数多1.在只持有一支股票的人中,有一半持有股票.则只持有股票的股民人数是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的通项为an , 前n项和为sn , 且an是sn与2的等差中项,数列{bn}中,b1=1,点P(bn , bn+1)在直线x﹣y+2=0上. (Ⅰ)求数列{an}、{bn}的通项公式an , bn
(Ⅱ)设{bn}的前n项和为Bn , 试比较 与2的大小.
(Ⅲ)设Tn= ,若对一切正整数n,Tn<c(c∈Z)恒成立,求c的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中 是自然对数的底数.

(Ⅰ)讨论的单调性;

(Ⅱ)设函数,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知在平面直角坐标系,的参数方程为 (为参数)以轴为极轴 为极点建立极坐标系,在该极坐标系下,圆是以点为圆心,且过点的圆心.

(1)求圆及圆在平而直角坐标系下的直角坐标方程;

(2)求圆上任一点与圆上任一点之间距离的最小值.

查看答案和解析>>

同步练习册答案