1£®ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÖ±Ïßl£º2$\sqrt{2}x-y+3+8\sqrt{2}$=0ºÍÔ²C1£ºx2+y2+8x+F=0£®ÈôÖ±Ïßl±»Ô²C1½ØµÃµÄÏÒ³¤Îª2$\sqrt{3}$£®
£¨1£©ÇóÔ²C1µÄ·½³Ì£»
£¨2£©ÉèÔ²C1ºÍxÖáÏཻÓÚA£¬BÁ½µã£¬µãPΪԲC1Éϲ»Í¬ÓÚA£¬BµÄÈÎÒâÒ»µã£¬Ö±ÏßPA£¬PB½»yÖáÓÚM£¬NÁ½µã£®µ±µãP±ä»¯Ê±£¬ÒÔMNΪֱ¾¶µÄÔ²C2ÊÇ·ñ¾­¹ýÔ²C1ÄÚÒ»¶¨µã£¿ÇëÖ¤Ã÷ÄãµÄ½áÂÛ£®

·ÖÎö £¨1£©°ÑÔ²µÄ·½³Ì»¯Îª±ê×¼·½³Ìºó£¬ÕÒ³öÔ²ÐÄ×ø±êºÍ°ë¾¶£¬ÀûÓõ㵽ֱÏߵľàÀ빫ʽÇó³öÔ²Ðĵ½Ö±ÏßlµÄ¾àÀ뼴ΪÏÒÐľ࣬Ȼºó¸ù¾Ý´¹¾¶¶¨Àí¼°¹´¹É¶¨ÀíÀûÓÃÔ²µÄ°ë¾¶¼°ÏÒÐľàÁгö·½³Ì£¬¼´¿ÉÇó³öF£¬µÃµ½Ô²µÄ·½³Ì£»
£¨2£©ÏÈÁîÔ²·½³ÌÖÐy=0·Ö±ðÇó³öµãAºÍµãBµÄ×ø±ê£¬¿ÉÉè³öµãPµÄ×ø±ê£¬·Ö±ð±íʾ³öÖ±ÏßPAºÍPBµÄбÂÊ£¬È»ºóд³öÖ±ÏßPAºÍPBµÄ·½³Ì£¬·Ö±ðÁîÖ±Ïß·½³ÌÖÐy=0Çó³öMÓëNµÄ×ø±ê£¬ÒòΪMNΪԲC2µÄÖ±¾¶£¬¸ù¾ÝÖеã×ø±ê¹«Ê½¼´¿ÉÇó³öÔ²ÐĵÄ×ø±ê£¬¸ù¾ÝÁ½µã¼äµÄ¾àÀ빫ʽÇó³öMN£¬µÃµ½Ô²µÄ°ë¾¶Îª $\frac{1}{2}$MN£¬Ð´³öÔ²C2µÄ·½³Ì£¬»¯¼òºó£¬Áîy=0Çó³öÔ²C2¹ýÒ»¶¨µã£¬ÔÙÀûÓÃÁ½µã¼äµÄ¾àÀ빫ʽÅжϳö´ËµãÔÚÔ²C1µÄÄÚ²¿£¬µÃÖ¤£»

½â´ð ½â£º£¨1£©Ô²C1£º£¨x+4£©2+y2=16-F£¬
ÔòÔ²ÐÄ£¨-4£¬0£©µ½Ö±Ïß2$\sqrt{2}$x-y+3+8$\sqrt{2}$=0µÄ¾àÀëd=$\frac{|-8\sqrt{2}+3+8\sqrt{2}|}{3}$=1
¸ù¾Ý´¹¾¶¶¨Àí¼°¹´¹É¶¨ÀíµÃ£º£¨$\frac{2\sqrt{3}}{2}$£©2+12=16-F£¬F=12
¡àÔ²C1µÄ·½³ÌΪ£¨x+4£©2+y2=4£»
£¨2£©ÁîÔ²µÄ·½³Ì£¨x+4£©2+y2=4ÖÐy=0µÃµ½£ºx=-6£¬x=-2£¬ÔòA£¨-6£¬0£©£¬B£¨-2£¬0£©
ÉèP£¨x0£¬y0£©£¨y0¡Ù0£©£¬Ôò£¨x0+4£©2+y02=4£¬µÃµ½£¨x0+4£©2-4=-y02¢Ù
¡àkPA=$\frac{{y}_{0}}{{x}_{0}+6}$ÔòlPA£ºy=$\frac{{y}_{0}}{{x}_{0}+6}$£¨x+6£©£¬M£¨0£¬$\frac{{6y}_{0}}{{x}_{0}+6}$£©
¡àÔòlPB£ºy=$\frac{{y}_{0}}{{x}_{0}+2}$£¨x+2£©£¬N£¨0£¬$\frac{2{y}_{0}}{{x}_{0}+2}$£©
Ô²C2µÄ·½³ÌΪx2+£¨y-$\frac{\frac{{6y}_{0}}{{x}_{0}+6}-\frac{2{y}_{0}}{{x}_{0}+2}}{2}$£©2=£¨$\frac{\frac{{6y}_{0}}{{x}_{0}+6}-\frac{2{y}_{0}}{{x}_{0}+2}}{2}$£©2
Íêȫƽ·½Ê½Õ¹¿ª²¢ºÏ²¢µÃ£ºx2+y2-2£¨$\frac{\frac{{6y}_{0}}{{x}_{0}+6}-\frac{2{y}_{0}}{{x}_{0}+2}}{2}$£©y+$\frac{2{{y}_{0}}^{2}}{{£¨x}_{0}+4£©^{2}-4}$=0
½«¢Ù´úÈ뻯¼òµÃx2+y2-£¨$\frac{{6y}_{0}}{{x}_{0}+6}-\frac{2{y}_{0}}{{x}_{0}+2}$£©y-12=0£¬
Áîy=0£¬µÃx=¡À2$\sqrt{3}$£¬
ÓÖµãQ£¨-2$\sqrt{3}$£¬0£©£¬
ÓÉQµ½Ô²C1µÄÔ²ÐÄ£¨-4£¬0£©µÄ¾àÀëd=$\sqrt{£¨4-2\sqrt{3}£©^{2}+0}$=4-2$\sqrt{3}$£¼2£¬ÔòµãQÔÚÔ²C1ÄÚ£¬
ËùÒÔµ±µãP±ä»¯Ê±£¬ÒÔMNΪֱ¾¶µÄÔ²C2¾­¹ýÔ²C1ÄÚÒ»¶¨µã£¨-2$\sqrt{3}$£¬0£©£»

µãÆÀ ±¾Ì⿼²éѧÉúÁé»îÔËÓô¹¾¶¶¨Àí¼°¹´¹É¶¨Àí»¯¼òÇóÖµ£¬»á¸ù¾ÝÖ±¾¶µÄÁ½¸ö¶ËµãµÄ×ø±êÇó³öÔ²µÄ·½³ÌÒÔ¼°ÕÆÎÕµãÓëÔ²µÄλÖùØϵµÄÅб𷽷¨£¬Áé»îÔËÓÃ30¡ãµÄÖ±½ÇÈý½ÇÐεıߵĹØϵ¼°Á½µã¼äµÄ¾àÀ빫ʽ»¯¼òÇóÖµ£¬ÊÇÒ»µÀ±È½ÏÄѵÄÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Çóº¯Êýy=3sin£¨$\frac{¦Ð}{3}$-2x£©µÄµ¥µ÷µÝ¼õÇø¼ä£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®£¨1£©ÉèSn=1+$\frac{1}{2}$+$\frac{1}{3}$+¡­+$\frac{1}{n}$£¬ÊԱȽÏSnÓëÇúÏßy=$\frac{1}{x}$£¬xÖá¼°Ö±Ïßx=1ºÍx=n+1Χ³ÉµÄÃæ»ýµÄ´óС£®
£¨2£©ÇóÖ¤£º1+$\frac{1}{\sqrt{{2}^{3}}}$+$\frac{1}{\sqrt{{3}^{3}}}$+¡­+$\frac{1}{\sqrt{{n}^{3}}}$£¼3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®¶¨ÒåÒ»ÖÖеÄÔËËã¡°?¡±£ºa?b=$\left\{\begin{array}{l}{a£¨a¡Ýb£©}\\{b£¨a£¼b£©}\end{array}\right.$£¬Ôòº¯Êýy=2x+1?2-xµÄ¼õÇø¼äºÍ×îСֵ·Ö±ðÊÇ£¨¡¡¡¡£©
A£®£¨-¡Þ£¬-$\frac{1}{2}$]£¬1B£®£¨-¡Þ£¬-$\frac{1}{2}$]£¬$\sqrt{2}$C£®[-$\frac{1}{2}$£¬+¡Þ£©£¬1D£®[-$\frac{1}{2}$£¬+¡Þ£©£¬$\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®º¯Êýy=sin£¨x+¦Õ£©µÄͼÏó¹ØÓÚyÖá¶Ô³Æ£¬Ôò¦ÕµÄÒ»¸öÈ¡Öµ¿ÉÒÔÊÇ£¨¡¡¡¡£©
A£®$\frac{¦Ð}{2}$B£®-$\frac{¦Ð}{4}$C£®¦ÐD£®2¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªº¯Êýf£¨x£©=$\sqrt{3}$sin£¨2x-$\frac{¦Ð}{6}$£©+cos£¨2x-$\frac{¦Ð}{6}$£©£®
£¨¢ñ£©Çóf£¨$\frac{¦Ð}{6}$£©µÄÖµ£»
£¨¢ò£©Çóº¯Êýf£¨x£©µÄ×îСÕýÖÜÆں͵¥µ÷µÝÔöÇø¼ä£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªn¡ÊN*£¬Éè²»µÈʽ×é$\left\{\begin{array}{l}x-ny¡Ý0\\ y¡Ü2\\ x¡Ü2n\\ y¡Ý0\end{array}\right.$Ëù±íʾµÄƽÃæÇøÓòΪDn£¬¼ÇDnÄÚÕûµãµÄ¸öÊýΪan£¨ºá¡¢×Ý×ø±ê¾ùΪÕûÊýµÄµã³ÆΪÕûµã£©£®
£¨¢ñ£©Í¨¹ýÑо¿a1£¬a2£¬a3µÄÖµµÄ¹æÂÉ£¬ÇóanµÄͨÏʽ£»   
£¨¢ò£©ÇóÖ¤£º$\frac{1}{{{a_1}^2}}+\frac{1}{{{a_2}^2}}+\frac{1}{{{a_3}^2}}+¡­+\frac{1}{{{a_n}^2}}£¼\frac{1}{12}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÒÑÖªf£¨x£©=ax3+bx-2£¬Èôf£¨2015£©=7£¬Ôòf£¨-2015£©µÄֵΪ-11£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖª¼¯ºÏ$A=\left\{{\left.x\right|y=\sqrt{{2^x}-4}+\frac{1}{x-4}}\right\}$
1£©Ç󼯺ÏA£»
2£©Èôº¯Êý$f£¨x£©=£¨{log_2}\frac{x}{8}£©•£¨{log_2}\frac{x}{4}£©£¨x¡ÊA£©$£¬Çóº¯Êýf£¨x£©µÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸