精英家教网 > 高中数学 > 题目详情
已知函数(注:ln2≈0.693)
(1)若函数f(x)在[1,+∞)上为增函数,求正实数a的取值范围;
(2)当a=1时,若直线y=b与函数y=f(x)的图象在上有两个不同交点,求实数b的取值范围:
(3)求证:对大于1的任意正整数
【答案】分析:(1)函数f(x)在[1,+∞)上为增函数则f'(x)≥0对x∈[1,+∞)恒成立,解之即可;
(2)把a=1代入函数f(x),将直线y=b和函数y=f(x)联立方程,判断其在上有两个不同交点,研究其导数得出不等式;
(3)先研究函数f(x)在[1,+∞)上的单调性,令x=,易得ln,然后利用此不等式进行放缩证明;
解答:解:(1)∵函数
∴f′(x)=+,∵函数f(x)在[1,+∞)上为增函数,
∴f′(x)>0,在[1,+∞)上恒成立,
+≥0,化简得,-≥0,可得a≤,求出的最大值,≤1,
∴a≤1;
(2)a=1,可得f(x)=+lnx,y=b,
若直线y=b与函数y=f(x)的图象在上有两个不同交点,
等价于方程b=+lnx,在上有两个不同交点,
∴令g(x)=+lnx-b,g(x)在上有两个不同交点,
g′(x)=
若x>1,g′(x)>0,g(x)为增函数;
若0<x<1,g′(x)>0,g(x)为减函数;
,解得0<b≤ln2-
(3)当a=1时,f(x)=f(x)=+lnx,在[1,+∞)上为增函数,
当n>1时,令x=,则x>1,故f(x)>f(1)=0,
f()=+ln=-+ln>0,即ln
∴lnn>ln+ln+…+ln+++…+
点评:此题考查学生会根据导函数的正负判断得到函数的单调区间,会根据函数的增减性证明不等式,是一道综合题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=16lnx+x2-12x+11.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若直线y=b与函数y=f(x)的图象有3个交点,求b的取值范围.(注:
2
3
<ln2<
7
10

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-3ax2-9a2x(a≠0).
(1)当a=l时,解不等式f(x)>0;
(2)若方程f(x)=12lnx-6ax-9a2-a在[1,2]恰好有两个相异的实根,求实数a的取值范围(注:ln2≈0.69):
(3)当a>0时,若f(x)在[0,2]的最大值为h(a),求h(a)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
ax2-(2a+1)x+2lnx(
1
2
<a<1)

(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)函数f(x)在区间[1,2]上是否有零点,若有,求出零点,若没有,请说明理由;
(Ⅲ)若任意的x1,x2∈(1,2)且x1≠x2,证明:|f(x2)-f(x1)|<
1
2
.(注:ln2≈0.693)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1-x
ax
+lnx
(注:ln2≈0.693)
(1)若函数f(x)在[1,+∞)上为增函数,求正实数a的取值范围;
(2)当a=1时,若直线y=b与函数y=f(x)的图象在[
1
2
,2]
上有两个不同交点,求实数b的取值范围:
(3)求证:对大于1的任意正整数n,lnn>
1
2
+
1
3
+
1
4
+…+
1
n

查看答案和解析>>

同步练习册答案