精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤2}\\{lo{g}_{2}(x-1),x>2}\end{array}\right.$,则f(f(6))的值为log25-2.

分析 利用分段函数直接求解函数值即可.

解答 解:函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤2}\\{lo{g}_{2}(x-1),x>2}\end{array}\right.$,则f(f(6))=f(log2(6-1))=f(log25)
=f(log2($lo{g}_{2}\frac{5}{2}$-1))=f(log2(log2$\frac{5}{4}$))=${2}^{lo{g}_{2}(lo{g}_{2}\frac{5}{4})}$=log25-2.
故答案为:log25-2.

点评 本题考查分段函数的应用,函数的在的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\left\{\begin{array}{l}{\sqrt{-x},x≤0}\\{lo{g}_{5}x,x>0}\end{array}\right.$,函数g(x)是周期为2的偶函数,且当x∈[0,1]时,g(x)=2x-1,则函数F(x)=f(x)-g(x)的零点个数为(  )
A.8B.7C.6D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数y=Asin(ωx+φ)(A>0,ω>0,0<φ<π)在一个周期内的图象如图,此函数的解析式为y=2sin(2x+$\frac{2π}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,一根长为2米的竹竿AB斜靠在在直角墙壁上,假设竹竿在同一平面内移动,当竹竿的下段点A从距离墙角O点1米的地方移动到$\sqrt{3}$米的地方,则AB的中点D经过的路程为$\frac{π}{6}$米.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知两点M(0,2),N(-3,6)到直线l的距离分别为1和3,则满足条件的直线l的条数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.过平面区域$\left\{\begin{array}{l}{x-y+2≥0}\\{y+2≥0}\\{x+y+2≤0}\end{array}\right.$内一点作圆O:x2+y2=1的两条切线,切点分别为A、B,记∠APB=α,则当α最小时,cosα的值为(  )
A.$\frac{9}{10}$B.$\frac{7}{10}$C.$\frac{\sqrt{5}}{20}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=lnx+$\frac{a}{x}$(a>0).
(Ⅰ)求函数f(x)在[1,+∞)上的最小值;
(Ⅱ)若存在三个不同的实数xi(i=1,2,3)满足f(x)=ax.
(i)证明:?a∈(0,1),f($\frac{{a}^{2}}{2}$)>$\frac{{a}^{3}}{2}$;
(ii)求实数a的取值范围及x1•x2•x3的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求过点P(-1,3),并且在两轴上的截距相等的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设Sn为数列{an}的前n项和,Sn+$\frac{1}{{2}^{n}}$=(-1)nan(n∈N*),则数列{Sn}的前9项和为-$\frac{341}{1024}$.

查看答案和解析>>

同步练习册答案