精英家教网 > 高中数学 > 题目详情
已知函数=
(1)求函数的单调区间
(2)若关于的不等式对一切(其中)都成立,求实数的取值范围;
(3)是否存在正实数,使?若不存在,说明理由;若存在,求取值的范围
(1)单调递增区间是(),单调递减区间是(2)时,时,时,(3)当时,,此时

试题分析:(1)的定义域为,令,得






 
_




所以的单调递增区间是(),单调递减区间是  3分
(2)∵不等式对一切(其中)都成立,
对一切(其中)都成立 即时,

①当时,即时,上单调递增,
时,上单调递减,
,即时,在上单调递增,上单调递减,

综上,时,时,时, 9分
(3)存在  10分

上有两个不同点的函数值相等
在()单调递增,在上单调递减
时,时,,数形结合知
时,,此时
点评:求函数单调区间通常利用导数的正负解决,第二问中将不等式恒成立问题转化为函数最值问题,这是常用的转化思路,但要注意分情况讨论得到不同的最值,第三问对于条件指数式将其转化为对数式从而和已知函数发生联系,这种转化学生可能不易想到
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

分别是定义在R上的奇函数和偶函数,当时,,且g(-3)=0,则不等式的解集是      ( )
A.(-3,0)∪(3,+∞)B. (-3,0)∪(0,3)
C.(-∞,-3)∪(3,+∞)D.(-∞,-3)∪(0,3)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,则等于(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数时都取得极值
求a、b的值;
(2)函数f(x)的极值;
(3)若,方程恰好有三个根,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数(其中).
(1)求的单调区间;
(2)若函数在区间上为增函数,求的取值范围;
(3)设函数,当时,若存在,对任意的,总有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数的定义域是的导函数,且内恒成立.
(1)求函数的单调区间;
(2)若,求的取值范围;
(3)设的零点,,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,().
(1)求函数的极值;
(2)已知,函数,判断并证明的单调性;
(3)设,试比较,并加以证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数的最小值为0,其中
(1)求a的值
(2)若对任意的,有成立,求实数k的最小值
(3)证明

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知的导函数,则得图像是(   )

查看答案和解析>>

同步练习册答案