精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,已知曲线的参数方程为,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)求曲线与曲线两交点所在直线的极坐标方程;

(2)若直线的极坐标方程为,直线轴的交点为,与曲线相交于两点,求的值.

【答案】(1);(2)

【解析】

(1)先将化为普通方程,可知是两个圆,由圆心的距离判断出两者相交,进而得相交直线的普通方程,再化成极坐标方程即可;(2)先求出l的普通方程有,点,写出直线l的参数方程,代入曲线,设交点两点的参数为,根据韦达定理可得,进而求得的值。

(1) 曲线的普通方程为:

曲线的普通方程为:,即

由两圆心的距离,所以两圆相交,

所以两方程相减可得交线为,即.

所以直线的极坐标方程为.

(2) 直线的直角坐标方程:,则与轴的交点为

直线的参数方程为,带入曲线.

两点的参数为

所以,所以同号.

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数

1)求函数的解析式;

2)设,是否存在实数a,使得当时,恒有成立,若存在,求出a的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,在区间上有最大值,最小值,设函数.

1)求的值;

2)不等式上恒成立,求实数的取值范围;

3)方程有三个不同的实数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系, 曲线的参数方程为为参数) ;在以原点为极点, 轴的正半轴为极轴的极坐标系中, 曲线的极坐标参数方程为.

1)求曲线的极坐标方程和曲线的直角坐标方程;

2)若射线与曲线,的交点分别为 (异于原点). 当斜率, 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把函数的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到函数的图象,已知函数 则当函数4个零点时的取值集合为( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,又有四个零点,则实数的取值范围是( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的三个顶点A(-1,0),B(1,0),C(3,2),其外接圆为⊙H.

(1)若直线l过点C,且被⊙H截得的弦长为2,求直线l的方程;

(2)对于线段BH上的任意一点P,若在以C为圆心的圆上都存在不同的两点MN,使得点M是线段PN的中点,求⊙C的半径r的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)当时,记在区间的最大值为,最小值为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的方程为

1)当时,求直线与坐标轴围成的三角形的面积;

2)证明:不论取何值,直线恒过第四象限.

3)当时,求直线上的动点到定点距离之和的最小值.

查看答案和解析>>

同步练习册答案