【题目】如图,在平行四边形中,,,以为折痕将△折起,使点到达点的位置,且.
(1)证明:平面平面;
(2)为线段上一点,为线段上一点,且,求三棱锥的体积.
【答案】(1)见解析.
(2)1.
【解析】分析:(1)首先根据题的条件,可以得到=90,即,再结合已知条件BA⊥AD,利用线面垂直的判定定理证得AB⊥平面ACD,又因为AB平面ABC,根据面面垂直的判定定理,证得平面ACD⊥平面ABC;
(2)根据已知条件,求得相关的线段的长度,根据第一问的相关垂直的条件,求得三棱锥的高,之后借助于三棱锥的体积公式求得三棱锥的体积.
详解:(1)由已知可得,=90°,.
又BA⊥AD,且,所以AB⊥平面ACD.
又AB平面ABC,
所以平面ACD⊥平面ABC.
(2)由已知可得,DC=CM=AB=3,DA=.
又,所以.
作QE⊥AC,垂足为E,则 .
由已知及(1)可得DC⊥平面ABC,所以QE⊥平面ABC,QE=1.
因此,三棱锥的体积为
.
科目:高中数学 来源: 题型:
【题目】某机构为了解某地区中学生在校月消费情况,随机抽取了 100名中学生进行调查.如图是根据调査的结果绘制的学生在校月消费金额的频率分布直方图.已知三个金额段的学生人数成等差数列,将月消费金额不低于550元的学生称为“高消费群”.
(1)求的值,并求这100名学生月消费金额的样本平均数 (同一组中的数据用该组区间的中点值作代表);
(2)根据已知条件完成下面列联表,并判断能否有的把握认为“高消费群”与性别有关?
附: (其中样本容量)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】两个人射击,甲射击一次中靶概率是,乙射击一次中靶概率是.
(1)两人各射击一次,中靶至少一次就算完成目标,则完成目标概率是多少?
(2)两人各射击2次,中靶至少3次就算完成目标,则完成目标的概率是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(为常数,).给你四个函数:①;②;③;④.
(1)当时,求不等式的解集;
(2)求函数的最小值;
(3)在给你的四个函数中,请选择一个函数(不需写出选择过程和理由),该函数记为,满足条件:存在实数a,使得关于x的不等式的解集为,其中常数s,,且.对选择的和任意,不等式恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
该兴趣小组确定的研究方案是:先用2、3、4、5月的4组数据求线性回归方程,再用1月和6月的2组数据进行检验.
(1)请根据2、3、4、5月的数据,求出y关于x的线性回归方程;
(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?
(参考公式: ,)
参考数据:11×25+13×29+12×26+8×16=1092,112+132+122+82=498.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的右顶点为A,上顶点为B.已知椭圆的离心率为,.
(1)求椭圆的方程;
(2)设直线与椭圆交于,两点,与直线交于点M,且点P,M均在第四象限.若的面积是面积的2倍,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】通过市场调查,得到某种产品的资金投入x(单位:万元)与获得的利润y(单位:万元)的数据,如表所示:
资金投入x | 2 | 3 | 4 | 5 | 6 |
利润y | 2 | 3 | 5 | 6 | 9 |
(1)画出数据对应的散点图;
(2)根据上表提供的数据,用最小二乘法求线性回归直线方程;
(3)现投入资金10万元,求获得利润的估计值为多少万元?
参考公式:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着人们生活水平的不断提高,人们对餐饮服务行业的要求也越来越高,由于工作繁忙无法抽出时间来享受美味,这样网上外卖订餐应运而生.若某商家的一款外卖便当每月的销售量(单位:千盒)与销售价格(单位:元/盒)满足关系式其中,为常数,已知销售价格为14元/盒时,每月可售出21千盒.
(1)求的值;
(2)假设该款便当的食物材料、员工工资、外卖配送费等所有成本折合为每盒12元(只考虑销售出的便当盒数),试确定销售价格的值,使该店每月销售便当所获得的利润最大.(结果保留一位小数)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一次人才招聘会上,有、两家公司分别开出了他们的工资标准:公司允诺第一个月工资为8000元,以后每年月工资比上一年月工资增加500元;公司允诺第一年月工资也为8000元,以后每年月工资在上一年的月工资基础上递增,设某人年初被、两家公司同时录取,试问:
(1)若该人分别在公司或公司连续工作年,则他在第年的月工资分别是多少;
(2)该人打算连续在一家公司工作10年,仅从工资收入总量较多作为应聘的标准(不计其他因素),该人应该选择哪家公司,为什么?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com