精英家教网 > 高中数学 > 题目详情
5.已知函数的图象如图所示,根据此图象你能写出这个函数的解析式吗?

分析 通过图象写出函数的表达式即可.

解答 解:由图象得:
f(x)=$\left\{\begin{array}{l}{-1,x≤0}\\{2,x>0}\end{array}\right.$.

点评 本题考查了求函数的解析式问题,考查数形结合,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xoy中,以C(1,-2)为圆心的圆与直线x+y+3$\sqrt{2}$+1=0相切.
(1)求圆C的方程;
(2)是否存在斜率为1的直线L,使得圆C上存在两点M,N关于L对称,若存在,求出此直线方程,若不存在,请说明理由.
(3)求圆C的过原点弦长最短的弦所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知正项数列{an}的前n项和为Sn,满足Sn=2an-$\frac{1}{2}$.
(1)证明:数列{an}是等比数列;
(2)若bn=log2an+3,求数列$\left\{{\frac{1}{{{b_n}{b_{n+1}}}}}\right\}$的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知5lgx,=25,则x=100;已知函数f(x)=lgx,若f(ab)=1,则f(a2)+f(b2)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.某大学对在座位编号1,2,3,…,n的n个考生面试且每次选取考生座位号互不相邻.举例如下:若共有6名面试者,座位编号依次为1、2、3、4、5、6等三人,亦可取2、4等两人,单单选取一人如3号亦可,记符合要求的取法总数为F(n).一个爱思考的秘书对F(n)进行了研究,得出下面一些结论:
(1)F(1)+F(2)+F(3)=7
(2)F(n)=2F(n-1),n>1
(3)F(4)=13
(4)F(6)=20
(5)n=10时,包含10号的选取方法有F(8)+1种
(6)F(n)=F(n-1)+F(n-2)+1,n>2
 请选出所有正确结论的命题序号(1),(4),(6).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.y=f(x)在(0,+∞)上是减函数,则f(a2-a+2)与f($\frac{7}{4}$)的大小关系是(  )
A.f(a2-a+2)≤f($\frac{7}{4}$)B.f(a2-a+2)≥f($\frac{7}{4}$)C.f(a2-a+2)=f($\frac{7}{4}$)D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设函数f(x)=|lg(x+1)|,实数a,b(a<b)满足f(a)=f(-$\frac{b+1}{b+2}$),f(10a+6b+21)=4lg2,则a+b的值为-$\frac{11}{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若0<x<$\frac{π}{2}$,则x与sinx的大小关系是(  )
A.x>sinxB.x<sinxC.x≥sinxD.x≤sinx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.判断下列函数的单调性:
(1)f(x)=5x+1;
(2)f(x)=-4x+3.

查看答案和解析>>

同步练习册答案