精英家教网 > 高中数学 > 题目详情
8.已知扇形的圆心角是72°,半径为20cm,则扇形的面积为(  )
A.70πcm2B.70 cm2C.80cm2D.80πcm2

分析 根据扇形的面积公式,在公式中代入圆心角和半径,约分化简得到最简结果.

解答 解:由题意知扇形的圆心角是72°,半径为20cm,
∴扇形的面积是S=$\frac{72}{360}•π•2{0}^{2}$=80πcm2
故选C.

点评 本题考查扇形的面积公式,是一个基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知点 F 是抛物线 y2=4x的焦点,M、N 是该抛物线上两点,|MF|+|NF|=6,则 MN中点的横坐标为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设点P圆C:x2+y2=1上的一个动点,则点P到直线x+$\sqrt{3}$y-4=0的距离最小值为(  )
A.1B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}满足:${a_1}=2,{a_{n+1}}={a_n}^2-k{a_n}+k({k∈{N^*}}),{a_1},{a_2},{a_3}$分别是公差不为零的等差数列{bn}的前三项.
(1)求k的值;
(2)求证:对任意的n∈N*,bn,b2n,b4n不可能是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.记sin(-80°)=k,那么tan100°=(  )
A.$\frac{{\sqrt{1-{k^2}}}}{k}$B.$-\frac{{\sqrt{1-{k^2}}}}{k}$C.$\frac{k}{{\sqrt{1-{k^2}}}}$D.$-\frac{k}{{\sqrt{1-{k^2}}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A,B,C的对边分别为a,b,c,$cosC=\frac{3}{10}$.
(1)若$\overrightarrow{CA}•\overrightarrow{CB}=\frac{9}{2}$,求△ABC的面积;
(2)设向量$\overrightarrow x=(2sinB,-\sqrt{3})$,$\overrightarrow y=(cos2B,1-2{sin^2}\frac{B}{2})$,且$\overrightarrow x∥\overrightarrow y$,求角B的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知$f(α)=\frac{{sin({π+α})cos({2π-α})tan({-α})}}{{tan({-π-α})cos({\frac{3π}{2}+α})}}$.
(1)化简f(α);
(2)当$α=-\frac{31π}{3}$时,求f(α)的值;
(3)若α是第三象限的角,且$sinα=-\frac{1}{5}$,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列函数中,在其定义域内是增函数而且又是奇函数的是(  )
A.$y=x+\frac{1}{x}$B.y=2x-2-xC.y=log2|x|D.y=2x+2-x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知f(x)的定义域是(0,+∞),f'(x)是f(x)的导数,且满足f(x)>f'(x),则不等式ex+2•f(x2-x)>ex2•f(2)的解集是(-1,0)∪(1,2).

查看答案和解析>>

同步练习册答案