精英家教网 > 高中数学 > 题目详情
已知分别是椭圆C:的左焦点和右焦点,O是坐标系原点, 且椭圆C的焦距为6, 过的弦两端点所成⊿的周长是.
(Ⅰ).求椭圆C的标准方程.
(Ⅱ)已知点是椭圆C上不同的两点,线段的中点为.
求直线的方程;
(Ⅲ)若线段的垂直平分线与椭圆C交于点,试问四点是否在同一个圆上,若是,求出该圆的方程;若不是,请说明理由.
(Ⅰ) 解:设椭圆C:的焦距为2c,
∵椭圆C:的焦距为2,  ∴2c=6,即c=3…………1分
又∵分别是椭圆C:的左焦点和右焦点,且过的弦AB两端点A、B与所成⊿AB的周长是.
∴⊿AB的周长 = AB+(AF2+BF2)= (AF1+BF1)+ (AF2+BF2)=4=
                                           …………2分
又∵, ∴∴椭圆C的方程是…………4分
(Ⅱ)解一:是椭圆C上不同的两点,
.以上两式相减得:,                             

∵线段的中点为,∴.                                                           

,由上式知, 则重合,与已知矛盾,因此
. ∴直线的方程为,即.                    
 消去,得,解得.
∴所求直线的方程为.    ………………8分
解二: 当直线的不存在时, 的中点在轴上, 不符合题意.
故可设直线的方程为, .           
 消去,得   (*)
.              的中点为,
..解得.                                                           
此时方程(*)为,其判别式.∴直线的方程为.                                     
(Ⅲ)由于直线的方程为
则线段的垂直平分线的方程为,即.        
 得,                               
消去,设
.
∴线段的中点G的横坐标为,纵坐标.
.                                             
.

,                    
∴四点在同一个圆上,此圆的圆心为点G,半径为
其方程为.         …………14分   
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

P是椭圆上的点,是椭圆的焦点,若
. 则此椭圆的离心率为(   )                                                                     
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在等边中,O为边的中点,DE的高线上的点,且.若以A,B为焦点,O为中心的椭圆过点D,建立适当的直角坐标系,记椭圆为M

(1)求椭圆M的方程;
(2)过点E的直线与椭圆M交于不同的两点P,Q,点P在点E, Q
间,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

..(本小题满分12分)
已知直线与椭圆相交于A,B两点,线段AB中点M在直线上.
(1)求椭圆的离心率;
(2)若椭圆右焦点关于直线l的对称点在单位圆上,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆的一个焦点(c为椭圆的半焦距).
(1)求椭圆的方程;
(2)若为直线上一点,为椭圆的左顶点,连结交椭圆于点,求的取值范围;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知中心在原点,焦点在x轴上的椭圆经过点(),且它的左焦点F1将长轴分成2∶1,F2是椭圆的右焦点.

(1)求椭圆的标准方程;
(2)设P是椭圆上不同于左右顶点的动点,延长F1P至Q,使Q、F2关于∠F1PF2的外角平分线l对称,求F2Q与l的交点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

的离心率为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)设椭圆(a>b>0)的左焦点为F1(-2,0),左准线 L1 与x轴交于点N(-3,0),过点N且倾斜角为300的直线L交椭圆于A、B两点。
(1)求直线L和椭圆的方程;
(2)求证:点F1(-2,0)在以线段AB为直径的圆上

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

((本小题满分12分)
已知椭圆的中心在坐标原点,焦点在轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,短轴长为2.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线且与椭圆相交于A,B两点,当P是AB的中点时,
求直线的方程.

查看答案和解析>>

同步练习册答案