精英家教网 > 高中数学 > 题目详情

已知a>0,设命题p:函数y=axR上单调递减,q:不等式x+|x-2a|>1的解集为R,若p和q中有且只有一个命题为真命题,求a的取值范围.

答案:
解析:

  解:由函数R上单调递减知,所以命题为真命题时的取值范围是

  令,则不等式的解集为R

  只要即可,而函数R上的最小值为

  所以,即

  若假,则真,则

  所以命题有且只有一个命题正确时的取值范围是


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a>0,设命题p:函数y=ax在R上单调递减,q:设函数y=
2x-2ax≥2a
2ax<2a
对任意的x,恒有y>1.若p∧q为假,p∨q为真,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

10、已知a>0,设命题p:函数y=ax在R上单调递增;命题q:不等式ax2-ax+1>0对?x∈R恒成立.若p且q为假,p或q为真,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,设命题p:函数y=(
1
a
)x
为增函数.命题q:当x∈[
1
2
,2]时函数f(x)=x+
1
x
1
a
恒成立.如果p∨q为真命题,p∧q为假命题,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,设命题p:函数y=ax在R上单调递减,q:不等式x+|x-2a|>1的解集为R,若p和q中有且只有一个命题为真命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,设命题p:函数y=ax在R上单调增;命题q:不等式ax2-ax+1>0对任意实数x恒成立.若p∧q假,p∨q真,则a的取值范围为
(0,1]∪[4,+∞)
(0,1]∪[4,+∞)

查看答案和解析>>

同步练习册答案