精英家教网 > 高中数学 > 题目详情

已知函数的图象经过两点,如图所示,且函数的值域为.过该函数图象上的动点轴的垂线,垂足为,连接.

(I)求函数的解析式;
(Ⅱ)记的面积为,求的最大值.

(I);(II)三角形面积的最大值为16.

解析试题分析:(I)用待定系数法.由抛物线的对称性及题设可知,函数的对称轴为,顶点为.
将顶点坐标及点(0,0),(0,6)的坐标代入解析式得关于a,b,c方程组,解此方程组,便可得 的解析式.
(II)用三角形面积公式求得三角形的面积与t之间的函数关系式,然后利用导数可求得的面积为,求的最大值.
试题解析:(I)由已知可得函数的对称轴为,顶点为.              2分
方法一:由  
                                    5分
                               6分
方法二:设                             4分
,得                                      5分
                                     6分
(II)              8分
                       9分 
列表得:



4



0



极大值

                 11分
由上表可得
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(I)讨论函数的单调性;
(Ⅱ)当时,恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数在点处的切线方程为,求的值;
(2)若,函数在区间内有唯一零点,求的取值范围;
(3)若对任意的,均有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且.
(1)求函数的表达式;
(2)当时,不等式上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的极值点;
(2)若直线过点,并且与曲线相切,求直线的方程;
(3)设函数,其中,求函数上的最小值(其中为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数满足的图像在处的切线垂直于直线.
(1)求的值;
(2)若方程有实数解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,
⑴求证函数上的单调递增;
⑵函数有三个零点,求的值;
⑶对恒成立,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)当时,求的单调区间;
(2)当,且时,求在区间上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,设曲线在与轴交点处的切线为的导函数,满足
(1)求
(2)设,求函数上的最大值;
(3)设,若对于一切,不等式恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案