精英家教网 > 高中数学 > 题目详情

【题目】下列说法正确的是( )

①设某大学的女生体重与身高具有线性相关关系,根据一组样本数据,用最小二乘法建立的线性回归方程为 ,则若该大学某女生身高增加,则其体重约增加

②关于的方程的两根可分别作为椭圆和双曲线的离心率;

③过定圆上一定点作圆的动弦为原点,若,则动点的轨迹为椭圆;

④已知是椭圆的左焦点,设动点在椭圆上,若直线的斜率大于,则直线为原点)的斜率的取值范围是.

A. ①②③ B. ①③④ C. ①②④ D. ②③④

【答案】C

【解析】

利用线性回归方程系数的几何意义,圆锥曲线离心率的范围,椭圆的性质,逐一判断即可.

设某大学的女生体重ykg)与身高xcm)具有线性相关关系,根据一组样本数据(xiyi)(i=1,2,…,n),用最小二乘法建立的线性回归方程为0.85x﹣85.71,则若该大学某女生身高增加1cm,则其体重约增加0.85kg,正确;

关于x的方程x2mx+1=0(m>2)的两根之和大于2,两根之积等于1,故两根中,一根大于1,一根大于0小于1,故可分别作为椭圆和双曲线的离心率.正确;

设定圆C的方程为(xa2+(xb2r2,其上定点Ax0y0),设Ba+rcosθ,b+rsinθ),Pxy),

)得,消掉参数θ,得:(2xx0a2+(2yy0b2r2,即动点P的轨迹为圆, ∴故不正确;

,得a2=4,b2=3,∴.则F(﹣1,0),

如图:过F作垂直于x轴的直线,交椭圆于Ax轴上方),则xA=﹣1,

代入椭圆方程可得

P为椭圆上顶点时,P(0,),此时,又

∴当直线FP的斜率大于时,直线OP的斜率的取值范围是

P为椭圆下顶点时,P(0,),

∴当直线FP的斜率大于时,直线OP的斜率的取值范围是(),

综上,直线OPO为原点)的斜率的取值范围是∪().

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】了解某市今年初二年级男生的身体素质状况,从该市初二年级男生中抽取了一部分学生进行掷实心球的项目测试.成绩低于6米为不合格,成绩在68米(含6米不含8米)的为及格,成绩在8米至12米(含8米和12米,假定该市初二学生掷实心球均不超过12米)为优秀.把获得的所有数据,分成五组,画出的频率分布直方图如图所示.已知有4名学生的成绩在10米到12米之间.

)求实数的值及参加掷实心球项目测试的人数;

)根据此次测试成绩的结果,试估计从该市初二年级男生中任意选取一人,掷实心球成绩为优秀的概率;

)若从此次测试成绩最好和最差的两组男生中随机抽取2 名学生再进行其它项目的测试,求所抽取的2名学生来自不同组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知cosx2cosx),2cosxsinx),fx

1)把fx)的图象向右平移个单位得gx)的图象,求gx)的单调递增区间;

2)当共线时,求fx)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,AC=3,BC=4,AB=5,以AB所在直线为轴,三角形面旋转一周形成一旋转体,求此旋转体的表面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了确定下一年度投入某种产品的宣传费用,需了解年宣传费(单位:万元)对年销量(单位:吨)和年利润(单位:万元)的影响.对近6年宣传费和年销量的数据做了初步统计,得到如下数据:

年份

2013

2014

2015

2016

2017

2018

年宣传费x(万元)

38

48

58

68

78

88

年销售量y(吨)

16.8

18.8

20.7

22.4

24.0

25.5

经电脑模拟,发现年宣传费(万元)与年销售量(吨)之间近似满足关系式,对上述数据作了初步处理,得到相关的值如下表:

75.3

24.6

18.3

101.4

(Ⅰ)从表中所给出的6年年销售量数据中任选2年做年销售量的调研,求所选数据中至多有一年年销售量低于20吨的概率.

(Ⅱ)根据所给数据,求关于的回归方程;

(Ⅲ)若生产该产品的固定成本为200(万元),且每生产1(吨)产品的生产成本为20(万元)(总成本=固定成本+生产成本+年宣传费),销售收入为(万元),假定该产品产销平衡(即生产的产品都能卖掉),2019年该公司计划投入万元宣传费,你认为该决策合理吗?请说明理由.(其中为自然对数的底数,

附:对于一组数据,其回归直线中的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】12分)已知函数fx=

1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论.

2)求该函数在区间[1,4]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求曲线在点处的切线方程;

(2)讨论函数的单调性;

(3)当时,曲线轴交于点证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018衡水金卷(三)如图所示,在三棱锥中,平面平面

I)证明: 平面

II)若二面角的平面角的大小为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点.用分别表示乌龟和兔子所行的路程,为时间,则与故事情节相吻合的是(  )

A.B.C.D.

查看答案和解析>>

同步练习册答案