精英家教网 > 高中数学 > 题目详情
3.将一本书打开后竖立在桌面α上(如图),P,Q分别为AC,BE上的点,且AP=BQ.求证:PQ∥平面α.

分析 连结CQ,交BF于M,连结AM,由平行线分线段成比例定理及其推论能得到PQ∥AM,由此能证明PQ∥平面α.

解答 解:连结CQ,交BF于M,连结AM,
∵AP=BQ,AC=BE,∴PC=QE,
∵BF∥CE,
∴$\frac{BQ}{QE}=\frac{MQ}{QC}=\frac{AP}{PC}$,
∴PQ∥AM,
∵AM?面α,PQ?面α,
∴PQ∥平面α.

点评 本题考查线面平行的证明,是基础题,解题时要认真审题,注意平行线分线段成比例定理及其推论和线面平行判定定理的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知平面向量$\overrightarrow{α}$,$\overrightarrow{β}$($\overrightarrow{α}$≠$\overrightarrow{β}$)满足|$\overrightarrow{α}$|=$\sqrt{3}$且$\overrightarrow{α}$与$\overrightarrow{β}$-$\overrightarrow{α}$的夹角为150°,则|m$\overrightarrow{α}$+(1-m)$\overrightarrow{β}$|的取值范围是$[\frac{{\sqrt{3}}}{2},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.由五个面围成的多面体,其中上、下两个面是相似三角形,其余三个面都是梯形,并且这些梯形的腰延长后能相交于一点,则该多面体是(  )
A.三棱柱B.三棱台C.三棱锥D.四棱锥

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知α是第二象限角,判断$\frac{α}{4}$终边所在的象限.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=-4x2+4ax-4a-a2,(a≠0).
(1)若a=-1,求函数f(x)的单调递增区间;
(2)若函数f(x)在区间[0,1]上的最大值为0,存在x∈[2,3],使得m(x2+2x)<f(x)成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,△ABC和△A′B′C′的对应顶点的连线AA′,BB′,CC′交于同一点O,且$\frac{AO}{OA′}=\frac{BO}{OB′}=\frac{CO}{OC′}=\frac{2}{3}$.
(1)求证:A′B′∥AB,A′C′∥AC,B′C′∥BC;
(2)求$\frac{{S}_{△ABC}}{{S}_{△A′B′{C}^{′}}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若函数f(x)=$\frac{{x}^{3}}{(2x+1)(x+a)}$为奇函数,则a=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知P(x0,y0)是圆x2+y2=a2内异于圆心的点,则直线x0x+y0y=a2与圆交点的个数为0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=$\frac{\sqrt{2-x}}{lg(x+1)}$的定义域为(-1,0)∪(0,2].

查看答案和解析>>

同步练习册答案