精英家教网 > 高中数学 > 题目详情
1.设f(x)=($\frac{1}{m}$)|x|,m>1,x∈R,那么f(x)是(  )
A.偶函数且在(0,+∞)上是增函数B.奇函数且在(0,+∞)上是增函数
C.偶函数且在(0,+∞)上是减函数D.奇函数且在(0,+∞)上是减函数

分析 利用偶函数的定义,判断函数的偶函数,利用指数函数的单调性,可得f(x)在(0,+∞)上是减函数.

解答 解:∵f(x)=($\frac{1}{m}$)|x|
∴f(-x)=($\frac{1}{m}$)|-x|=f(x),
∴f(x)是偶函数,
在(0,+∞)上,f(x)=($\frac{1}{m}$)x
∵m>1,∴f(x)在(0,+∞)上是减函数,
故选:C.

点评 本题考查函数的单调性、奇偶性,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.(1)若函数f(x)=1g(ax2+ax+2)的定义域为实数集R,求实数a的取值范围;
(2)若函数f(x)=1g(ax2+ax+2)的值域为实数集R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=log2(x2+5x-6)的定义域是(  )
A.[-2,3]B.(-6,1]C.(-∞,-1)∪(6,+∞)D.(-∞,-6)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.函数f(x)=ln(a+x)-ln(a-x)(a>0),若曲线y=f(x)在点(0,f(0))处的切线方程为y=2x.
(1)求a的值;
(2)已知x≥0时,求使f(x)≥2x+$\frac{2{x}^{3}}{3}$+M恒成立的实数M的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=$\left\{{\begin{array}{l}{{{(\frac{1}{2})}^x},x≥4}\\{f(x+1),x<4}\end{array}}$,则$f(2-{log_{\frac{1}{2}}}3)$=$\frac{1}{24}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.二次函数f(x)=x2-2x+2在[-2,2]的值域为(  )
A.[1,2]B.[2,8]C.[2,10]D.[1,10]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=loga$\frac{1-mx}{x-1}$(a>0且a≠1,m≠1)是奇函数.
(1)求实数m的值;
(2)判断函数在(1,+∞)上的单调性,并证明;
(3)当a=3时,不等式f(x)<3x-t对任意x∈[2,3]恒成立,求t的取值范围;
(4)当x∈(n,a-2)时,函数f(x)的值域是(1,+∞),求实数a与n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知f(x)=$\left\{\begin{array}{l}{x-4}&{(x≥6)}\\{f(x+3)}&{(x<6)}\end{array}\right.$,则f(1)为(  )
A.3B.B、4C.C5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)是R上的奇函数,且当x<0时,函数的解析式为f(x)=x(1-x),求函数f(x)的解析式.

查看答案和解析>>

同步练习册答案