【题目】给出下列四个结论:
①当a为任意实数时,直线(a﹣1)x﹣y+2a+1=0恒过定点P,则过点P且焦点在y轴上的抛物线的标准方程是;
②已知双曲线的右焦点为(5,0),一条渐近线方程为2x﹣y=0,则双曲线的标准方程是;
③抛物线的准线方程为.
④已知双曲线,其离心率e∈(1,2),则m的取值范围是(﹣12,0).
其中正确命题的序号是___________.(把你认为正确命题的序号都填上)
【答案】①②③④
【解析】
对于①,先救出直线恒过的定点,再求出符合条件的抛物线方程,判断得①正确;②中根据渐近线方程求得a和b的关系进而根据焦距求得a和b,椭圆方程可得.③把抛物线方程整理成标准方程,进而根据抛物线的性质可得抛物线的准线方程.④根据离心率的范围求得m的取值范围判断④正确.
①整理直线方程得(x+2)a+(1﹣x﹣y)=0,可知直线(a﹣1)x﹣y+2a+1=0恒过定点P(﹣2,3),故符合条件的方程是 ,则①正确;
②依题意知 =2,a2+b2=25,得a=,b=2 ,则双曲线的标准方程是,故可知结论②正确.
③抛物线方程得x2=y,可知准线方程为 ,故③正确.
④离心率1<e=<2,解得﹣12<m<0,又m<0,故m的范围是﹣12<m<0,④正确,
故其中所有正确结论的个数是:4
故选:D.
科目:高中数学 来源: 题型:
【题目】平面图形ABB1A1C1C如图4所示,其中BB1C1C是矩形,BC=2,BB1=4,AB=AC= ,A1B1=A1C1= .现将该平面图形分别沿BC和B1C1折叠,使△ABC与△A1B1C1所在平面都与平面BB1C1C垂直,再分别连接A2A,A2B,A2C,得到如图2所示的空间图形,对此空间图形解答下列问题.
(Ⅰ)证明:AA1⊥BC;
(Ⅱ)求AA1的长;
(Ⅲ)求二面角A﹣BC﹣A1的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设A、B为抛物线C:上两点,A与B的中点的横坐标为2,直线AB的斜率为1.
(Ⅰ)求抛物线C的方程;
(Ⅱ)直线 交x轴于点M,交抛物线C:于点P,M关于点P的对称点为N,连结ON并延长交C于点H.除H以外,直线MH与C是否有其他公共点?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,圆O为△ABC的外接圆,D为的中点,BD交AC于E.
(Ⅰ)证明:AD2=DEDB;
(Ⅱ)若AD∥BC,DE=2EB,AD= , 求圆O的半径.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l经过抛物线x2=4y的焦点,且与抛物线交于A,B两点,点O为坐标原点.
(1)求抛物线准线方程;
(2)若△AOB的面积为4,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知的外接圆半径,角A、B、C的对边分别是a、b、c,且.
(I)求角B和边长b;
(II)求面积的最大值及取得最大值时的a、c的值,并判断此时三角形的形状.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com