精英家教网 > 高中数学 > 题目详情

【题目】给出下列四个结论:

当a为任意实数时,直线(a﹣1)x﹣y+2a+1=0恒过定点P,则过点P且焦点在y轴上的抛物线的标准方程是

已知双曲线的右焦点为(5,0),一条渐近线方程为2x﹣y=0,则双曲线的标准方程是

抛物线的准线方程为.

已知双曲线,其离心率e(1,2),则m的取值范围是(﹣12,0).

其中正确命题的序号是___________.(把你认为正确命题的序号都填上)

【答案】①②③④

【解析】

对于,先救出直线恒过的定点,再求出符合条件的抛物线方程,判断得正确;中根据渐近线方程求得a和b的关系进而根据焦距求得a和b,椭圆方程可得.把抛物线方程整理成标准方程,进而根据抛物线的性质可得抛物线的准线方程.根据离心率的范围求得m的取值范围判断正确.

整理直线方程得(x+2)a+(1﹣x﹣y)=0,可知直线(a﹣1)x﹣y+2a+1=0恒过定点P(﹣2,3),故符合条件的方程是 ,则正确;

依题意知 =2,a2+b2=25,得a=,b=2 ,则双曲线的标准方程是,故可知结论正确.

抛物线方程得x2=y,可知准线方程为 ,故正确.

离心率1<e=2,解得﹣12<m<0,又m0,故m的范围是﹣12<m<0,④正确,

故其中所有正确结论的个数是:4

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,分别是的中点,则下列说法错误的是(  )

A. B. 平面

C. D. 平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体的棱长为,点分别是棱的中点,点在平面内,点在线段上,若,则的最小值为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面图形ABB1A1C1C如图4所示,其中BB1C1C是矩形,BC=2,BB1=4,AB=AC= ,A1B1=A1C1= .现将该平面图形分别沿BC和B1C1折叠,使△ABC与△A1B1C1所在平面都与平面BB1C1C垂直,再分别连接A2A,A2B,A2C,得到如图2所示的空间图形,对此空间图形解答下列问题.
(Ⅰ)证明:AA1⊥BC;
(Ⅱ)求AA1的长;
(Ⅲ)求二面角A﹣BC﹣A1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设A、B为抛物线C:上两点,A与B的中点的横坐标为2,直线AB的斜率为1.

(Ⅰ)求抛物线C的方程;

(Ⅱ)直线 交x轴于点M,交抛物线C:于点P,M关于点P的对称点为N,连结ON并延长交C于点H.除H以外,直线MH与C是否有其他公共点?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆O为△ABC的外接圆,D为的中点,BD交AC于E.
(Ⅰ)证明:AD2=DEDB;
(Ⅱ)若AD∥BC,DE=2EB,AD= , 求圆O的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l经过抛物线x2=4y的焦点,且与抛物线交于A,B两点,点O为坐标原点.
(1)求抛物线准线方程;
(2)若△AOB的面积为4,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于的方程有两个不等的负根;关于的方程无实根,若为真,为假,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的外接圆半径,角ABC的对边分别是abc,且.

I)求角B和边长b

II)求面积的最大值及取得最大值时的ac的值,并判断此时三角形的形状.

查看答案和解析>>

同步练习册答案