精英家教网 > 高中数学 > 题目详情
14.求由y=x2,y=2x,y=x围成图形的面积$\frac{7}{6}$.

分析 利用定积分求曲边图形的面积解决该问题.关键要弄清楚积分的区间与被积函数,然后通过微积分基本定理求出所求的面积.

解答 解:由$\left\{\begin{array}{l}{y={x}^{2}}\\{y=x}\end{array}\right.$,得A(1,1),又由$\left\{\begin{array}{l}{y={x}^{2}}\\{y=2x}\end{array}\right.$,得B(2,4)
所求平面图形面积为:S=${∫}_{0}^{1}(2x-x)dx+{∫}_{1}^{2}(2x-{x}^{2})dx$=$(\frac{1}{2}{x}^{2}){|}_{0}^{1}+({x}^{2}-\frac{1}{3}{x}^{3}){|}_{1}^{2}$=$\frac{7}{6}$.
故答案为:$\frac{7}{6}$.

点评 本题考查定积分在求曲边图形面积中的应用,考查积分与导数之间的关系,求解时要确定出被积函数的原函数.考查学生的运算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.f(x)是偶函数且在[0,+∞)上是减函数,且f(log2x)>f(1),则x的取值范围是(  )
A.($\frac{1}{2}$,1)B.(0,$\frac{1}{2}$)∪(1,+∞)C.($\frac{1}{2}$,2)D.(0,1)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知i是虚数单位,则复数($\frac{1+i}{1-i}$)5的值为(  )
A.iB.-iC.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.将一枚质地均匀的骰子先后抛掷两次,若第一次朝上一面的点数为a,第二次朝上一面的点数为b,则函数y=ax2-2bx+1在(-∞,$\frac{1}{2}$]上为减函数的概率是$\frac{5}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知:集合A={x|$\frac{x}{2x-1}$≥1},B={x|3+2x-x2<0},U=R,求:A∩B,A∩(∁UB).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在如图所示的四棱锥中,底面ABCD是平行四边形,AB=4,BC=2,∠BCD=60°,且PD⊥底面ABCD,点E是AB的中点,点F是PC上一点.
(1)若F是PC的中点,证明EF∥平面PAD;
(2)若EF⊥CD,求PF:FC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知第四象限角α的终边与单位圆交于点$P(\frac{4}{5},m)$
(1)写出sinα,cosα,tanα的值;
(2)求$\frac{{sin(π+α)+2sin(\frac{π}{2}-α)}}{2cos(π-α)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=a-$\frac{2}{{2}^{x}+1}$(a∈R)
(1)如果函数f(x)为奇函数,求实数a的值;
(2)证明:对任意的实数a,函数f(x)在(-∞,+∞)上是增函数;
(3)若对任意的实数x,f(x)>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知f(x)是定义在R上的奇函数,x≥0时,f(x)=x2+$\sqrt{x+1}$+a,则f(-1)=$-\sqrt{2}$.

查看答案和解析>>

同步练习册答案