精英家教网 > 高中数学 > 题目详情
精英家教网如图,圆O是△ABC的外接圆,过点C的切线交AB的延长线于点D,CD=2
7
,AB=BC=3.AC的长为
 
分析:由切线CD的长,及AB的长,故可用切割线定理,求出DB的长,分析图中各线段之间的关系,易得△DBC∽△DCA,然后根据三角形相似的性质,不难得到线段对应成比例,由此不难得到线段AC的长.
解答:解:由切割线定理得:DB•DA=DC2,即DB(DB+BA)=DC2
DB2+3DB-28=0,
得DB=4.
∵∠A=∠BCD,
∴△DBC∽△DCA,
BC
CA
=
DB
DC

AC=
BC•DC
DB
=
3•2
7
4
=
3
7
2

则答案为:
3
7
2
点评:本题是考查同学们推理能力、逻辑思维能力的好资料,题目以证明题为主,特别是一些定理的证明和用多个定理证明一个问题的题目,我们注意熟练掌握:1.射影定理的内容及其证明; 2.圆周角与弦切角定理的内容及其证明;3.圆幂定理的内容及其证明;4.圆内接四边形的性质与判定.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,圆O是△ABC的外接圆,AB=AC,过点A作AP∥BC,交BO的延长线于点P.
(1)求证:AP是圆O的切线;
(2)若圆O的半径R=5,BC=8,求线段AP的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,圆O是△ABC的外接圆,过点C的切线交AB的延长线于点D,CD=2
7
,AB=BC=3.则BD的长
 
,AC的长
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•通州区一模)如图,圆O是△ABC的外接圆,过点C的切线交AB的延长线于点D,AB=BC=3,CD=2
10
,则cosD=
7
25
10
7
25
10

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•朝阳区一模)如图,圆O是△ABC的外接圆,过点C作圆O的切线交BA的延长线于点D.若CD=
3
,AB=AC=2,则线段AD的长是
1
1
;圆O的半径是
2
2

查看答案和解析>>

同步练习册答案