精英家教网 > 高中数学 > 题目详情

(11分)设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为组成数对(,并构成函数
(Ⅰ)写出所有可能的数对(,并计算,且的概率;
(Ⅱ)求函数在区间[上是增函数的概率.

(Ⅰ)所有基本事件如下:
(1,-1),(1,1),(1,2),(1,3),(1,4),
(2,-1),(2,1),(2,2),(2,3),(2,4),
(3,-1),(3,1),(3,2),(3,3),(3,4),共有15个.P(A)=
(Ⅱ)P(B)==

解析试题分析:(Ⅰ)所有基本事件如下:
(1,-1),(1,1),(1,2),(1,3),(1,4),
(2,-1),(2,1),(2,2),(2,3),(2,4),
(3,-1),(3,1),(3,2),(3,3),(3,4),共有15个. ……2分
设事件“a≥2,且b≤3”为A,     ……3分
则事件A包含的基本事件有(2,-1),(2,1),(2,2),(2,3),(3,-1),(3,1),(3,2),(3,3)共8个,  ……4分
所以P(A)=         ……5分
(Ⅱ)设事件“f(x)=ax2-4bx+1在区间[1,+∞)上为增函数”为B,因函数f(x)=ax2-4bx+1的图象的对称轴为x=       ……7分
且a>0,
所以要使事件B发生,只需≤1即2b≤a.    ……9分
由满足题意的数对有(1,-1)、(2,-1)、(2,1)、(3,-1)、(3,1),共5个,……10分
∴P(B)==        ……11分
考点:本题主要考查古典概型的概率计算,二次函数图象和性质。
点评:综合题,古典概型概率的计算,关键是明确基本事件总数及导致事件发生的基本事件数,根据题中条件,首先得到a,b的关系。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数处取得极小值2.
(1)求函数的解析式;
(2)求函数的极值;
(3)设函数,若对于任意,总存在,使得,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对于函数,若存在x0∈R,使方程成立,则称x0的不动点,已知函数a≠0).
(1)当时,求函数的不动点;
(2)若对任意实数b,函数恒有两个相异的不动点,求a的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知函数
(Ⅰ)求函数的单调区间;
(Ⅱ)a为何值时,方程有三个不同的实根.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)已知函数
(1)当时,求函数的极值;
(2) 若在[-1,1]上单调递减,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
若函数对任意的实数,均有,则称函数是区间上的“平缓函数”.  
(1) 判断是不是实数集R上的“平缓函数”,并说明理由;
(2) 若数列对所有的正整数都有 ,设,
求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题9分)函数
(Ⅰ)判断并证明的奇偶性;
(Ⅱ)求证:在定义域内恒为正。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)函数为奇函数,且在上为增函数,  , 若对所有都成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(13分) 设函数.
(1)当时,求函数上的最大值;
(2)记函数,若函数有零点,求的取值范围.

查看答案和解析>>

同步练习册答案