精英家教网 > 高中数学 > 题目详情

【题目】已知某三棱锥的三视图如图所示,图中的3个直角三角形的直角边长度已经标出,则在该三棱锥中,最短的棱和最长的棱所在直线的成角余弦值为(
A.
B.
C.
D.

【答案】A
【解析】解:由三视图还原原几何体如图:
几何体是三棱锥A﹣BCD,满足面ACD⊥面BCD,且AD⊥CD,BC⊥CD.
最短棱为CD,最长棱为AB.
在平面BCD内,过B作BE∥CD,且BE=CD,
∴四边形BEDC为正方形,可得AE=2
在Rt△AEB中,求得AB=
∴cos∠ABE=
即最短的棱和最长的棱所在直线的成角余弦值为
故选:A.
【考点精析】利用由三视图求面积、体积对题目进行判断即可得到答案,需要熟知求体积的关键是求出底面积和高;求全面积的关键是求出各个侧面的面积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)=x2(lga2)xlgbf(1)=2,当x∈Rf(x)≥2x恒成立,求实数a的值,并求此时f(x)的最小值?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 fx)是定义在 R上的偶函数,当 x≥0 时,fx)=x2+ax+b 的部分图象如图所示:

1)求 fx)的解析式;

2)在网格上将 fx)的图象补充完整,并根据 fx)图象写出不等式 fx≥1的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,满足,数列满足.

(1)求数列的通项公式;

(2),求数列的前项和

(3)对任意的正整数,是否存在正整数,使得?若存在,请求出的所有值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题10分)选修4—4:坐标系与参数方程

已知曲线C1的参数方程为t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ

)把C1的参数方程化为极坐标方程;

)求C1C2交点的极坐标(ρ≥0,0≤θ

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是定义在R上的函数,对R都有,且当0时,<0,=1.

(1)求的值

(2)求证:为奇函数;

(3)求在[-2,4]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC﹣A1B1C1中,侧面AA1B1B⊥底面ABC,△ABC和△ABB1都是边长为2的正三角形.
(Ⅰ)过B1作出三棱柱的截面,使截面垂直于AB,并证明;
(Ⅱ)求AC1与平面BCC1B1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】心理学家研究某位学生的学习情况发现:若这位学生刚学完的知识存留量记为1,则x天后的存留量;若在tt4)天时进行第一次复习,则此时知识存留量比未复习情况下增加一倍(复习时间忽略不计),其后存留量y2随时间变化的曲线恰为直线的一部分,其斜率为a0),存留量随时间变化的曲线如图所示.当进行第一次复习后的存留量与不复习的存留量相差最大时,则称此时刻为二次复习最佳时机点

1)若a=-1t5二次复习最佳时机点

2)若出现了二次复习最佳时机点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过抛物线G:y2=2px(p>0)焦点F的直线l与抛物线G交于M、N两点(M在x轴上方),满足 ,则以M为圆心且与抛物线准线相切的圆的标准方程为(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案