精英家教网 > 高中数学 > 题目详情
15.对于5年可出材的树木,在此期间的年生长率为18%,5年后的年生长率为10%,树木成材后,即可出售树木.也可让其继续生长,按10年的情形考虑,哪一种方案可获得较大的木材量?(1.15≈1.61)

分析 分别得到两种方案所得的木材量,作商法比较可得.

解答 解:由题意,第一种方案得到的木材为(1+18%)5×2,
第二种得到的木材为(1+18%)5×(1+10%)5
第一种除以第二种的结果为$\frac{2}{(1+0.1)^{5}}$=$\frac{2}{1.61}$>1
∴第一种方案可获得较大的木材量.

点评 本题考查不等式大小比较,涉及作商法比较式子的大小,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.若$\sqrt{x+2}+\sqrt{1-x}$有意义,则函数y=x2+3x-5的值域是$[{-\frac{29}{4},-1}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知数列{an}满足a1=1,a2=2,an+2=(2+cosnπ)(an-1)+3,n∈N*.那么数列{an}的通项公式为an=$\left\{\begin{array}{l}{n,n为奇数}\\{2×{3}^{\frac{n-2}{2}},n为偶数}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知抛物线C:y2=2x,过抛物线C上一点P(1,$\sqrt{2}$)作倾斜角互补的两条直线PA、PB,分别交抛物线C于A、B两点,则直线AB的斜率为$-2-2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=sin(ωx+φ)-b(ω>0,0<φ<π)的最小正周期是π.若将f(x)的图象先向右平移$\frac{π}{6}$个单位,再向上平移$\sqrt{3}$个单位,所得函数g(x)为奇函数.
(1)求f(x)的解析式;
(2)求f(x)的单调区间;
(3)若对任意x∈[0,$\frac{π}{3}$],f(x)+m≤0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知{an}是公差d≠0的等差数列,a2,a6,a22成等比数列,a4+a6=26;数列{bn}是公比q为正数的等比数列,且b3=a2,b5=a6
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)求数列{an•bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图1,在平面直角坐标系xOy中,椭圆E的方程为$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,A,B为椭圆的左右顶点,F1、F2是左、右焦点.
(1)已知椭圆内有一点P(1,-1),在椭圆上有一动点M,则求|MP|+|MF2|的最大值和最小值分别是多少?
(2)如图1,若直线l经过点B且垂直于x轴,点P是椭圆上异于A,B的任意一点,直线AP交l于点M,设过点M垂直于PB的直线为m.求证:直线m过定点,并求出定点的坐标.
(3)如图2,若直线l过左焦点F1交椭圆于A,B两点,直线MA,MB分别交直线x=-4于C,D两点,求证:以线段CD为直径的圆恒过两个定点.
(4)如图3,若M,N是椭圆E上关于原点对称的两点,点P是椭圆上除M,N外的任意一点,当直线PM,PN的斜率都存在,并记为kPM,kPN为定值.
(5)如图4,若动直线l:y=kx+m与椭圆E有且只有一个公共点,点M,N是直线l上的两点,且F1M⊥l,F2N⊥l,求四边形F1MNF2面积S的最大值.
(6)如图5,若过点F2且与坐标轴不垂直的直线交椭圆于P,Q两点.试探究:线段OF2上是否存在点M(m,0)使得$\overrightarrow{QP}•\overrightarrow{MP}=\overrightarrow{PQ}•\overrightarrow{MQ}$,若存在,求出实数的取值范围,若不存在,说明理由.
(7)如图6,若点P为抛物线D:y2=4x上的动点,设O为坐标原点,是否存在同时满足下列两个条件的△APM?①点M在椭圆C上;②点O为△APM的重心,若存在,求出点P的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.柯西不等式是由数学家柯西在研究数学分析中的“流数”问题时得到的.具体表述如下:对任意实数a1,a2,…,an和b1,b2,…bn(n∈N+,n≥2),都有(a12+a22+…+an2)(b12+b22+…bn2)≥(a1b1+a2b2+…+anbn2
(1)证明n=2时柯西不等式成立,并指出等号成立的条件;
(2)若对任意x∈[2,6],不等式3$\sqrt{x-2}$+2$\sqrt{6-x}$≤m恒成立,求实数m的取值范围(4分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,已知圆心为C(4,3)的圆经过原点O.
(Ⅰ)求圆C的方程;
(Ⅱ)设直线3x-4y+m=0与圆C交于A,B两点.若|AB|=8,求m的值.

查看答案和解析>>

同步练习册答案