精英家教网 > 高中数学 > 题目详情
本小题满分14分)
如图,在直三棱柱中,,点分别是的中点.
(Ⅰ)求证:平面
(Ⅱ)证明:平面平面
(Ⅲ)求多面体A1B1C1BD的体积V.
(Ⅰ)证明:见解析(Ⅱ)证明:见解析;
(Ⅲ)V=

试题分析:(I)根据线面平行的判定定理只需证明:AE//平面BC1D即可.
(II)因为,所以,然后再利用勾股定理证明,
从而可证明:,再根据面面垂直的判定定理得平面平面.
(III) 取A1B1中点F,易证:C1F⊥面A1B1BD,从而得到所求四棱锥的高,然后再根据棱锥的体积计算公式计算即可.
(Ⅰ)证明:在矩形中,

是平行四边形.…………………1分
所以,    …………………2分

平面平面
所以平面…………………4分
(Ⅱ)证明:直三棱柱中,,所以平面,…………………6分
平面,所以.…………………7分
在矩形中,,从而
所以,                …………………8分
,所以平面,                  …………………9分
平面,所以平面平面 …………………10分
(Ⅲ)取A1B1中点F,由A1C1=B1C1知C1F⊥A1B1,……………11分
又直三棱柱中侧面ABA1B1⊥底面A1B1C1且交线为A1B1,故C1F⊥面A1B1BD,……12分
∴V=…………………14分
点评:掌握线线、线面,面面垂直的判定与性质定理是解决此类证明的关键,并且还要记住柱,锥,台体的体积及表面积公式.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(满分14分)如图,在四面体ABCD中,OE分别是BDBC的中点,

(Ⅰ)求证:平面BCD
(Ⅱ)求异面直线ABCD所成角的余弦值;
(Ⅲ)求点E到平面ACD的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出下列命题:
①经过空间一点一定可作一条直线与两异面直线都垂直;②经过空间一点一定可作一平面与两异面直线都平行;③已知平面,直线,若,则;④四个侧面两两全等的四棱柱为直四棱柱;⑤底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥.其中正确命题的序号是      

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是三个互不重合的平面,是一条直线,则下列命题中正确的是(    )
A.若
B.若
C.若的所成角相等,则
D.若上有两个点到α的距离相等,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在正方体中,分别为的中点,则异面直线所成的角等于(  )
A.45°B.60°C.90°D.120°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知平行六面体ABCD—A1B1C1D1中,以顶点 A为端点的三条棱 长都等于1,两两夹角都是60°,求对角线AC1的长度. (10分)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(ii)当满足条件           ___________时,有.(填所选条件的序号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是空间四条直线.如果“”,则(    )
A.B.中任意两条可能都不平行
C.D.中至少有一对直线互相平行

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图5所示,在三棱锥中,,平面平面于点
(1)求三棱锥的体积;
(2)证明△为直角三角形.

查看答案和解析>>

同步练习册答案