精英家教网 > 高中数学 > 题目详情

【题目】若函数fx=cosasinx﹣sinbcosx)没有零点,则a2+b2的取值范围是( )

A.[01B.[0π2C.D.[0π

【答案】C

【解析】

试题先假设函数存在零点x0,得出方程:sinx0=2kπ+,再根据三角函数的性质得出结果.

解:假设函数fx)存在零点x0,即fx0=0

由题意,cosasinx0=sinbcosx0),

根据诱导公式得:asinx0+bcosx0=2kπ+

即,sinx0=2kπ+k∈Z),

要使该方程有解,则≥|2kπ+|min

即,k=0,取得最小),

所以,a2+b2

因此,当原函数fx)没有零点时,a2+b2

所以,a2+b2的取值范围是:[0).

故答案为C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,对于点,定义变换:将点变换为点,使得其中.这样变换就将坐标系内的曲线变换为坐标系内的曲线.则四个函数,,,在坐标系内的图象,变换为坐标系内的四条曲线(如图)依次是

A. ②,③,①,④B. ③,②,④,①C. ②,③,④,①D. ③,②,①,④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

在平面直角坐标系中,以坐标原点O为极点,x轴正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为:,经过点,倾斜角为的直线l与曲线C交于AB两点

I)求曲线C的直角坐标方程和直线l的参数方程;

)求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司决定投人资金进行产品研发以提高产品售价.已知每件产品的制造成本为元,若投人的总的研发成本(万元)与每件产品的销售单价()的关系如下表:

1)求关于的线性回归方程;

2)市场部发现,销售单价()与销量()存在以下关系:.根据(1)中结果预测,当为何值时,可获得最高的利润?

:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求函数的最小值;

2)设函数,讨论函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某城市中心花园的边界是圆心为O,直径为1千米的圆,花园一侧有一条直线型公路l,花园中间有一条公路AB(AB是圆O的直径),规划在公路l上选两个点P,Q,并修建两段直线型道路PB,QA.规划要求:道路PB,QA不穿过花园.已知,(CD为垂足),测得OC=0.9,BD=1.2(单位:千米).已知修建道路费用为m元/千米.在规划要求下,修建道路总费用的最小值为_____元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}为等差数列,a1=1,前n项和为Sn,数列{bn}为等比数列,b1>1,公比为2,且b2S3=54,b3+S2=16.

(Ⅰ)求数列{an}与{bn}的通项公式;

(Ⅱ)设数列{cn}满足cn=an+bn,求数列{cn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在等比数列{an}中,=2,=128,数列{bn}满足b1=1,b2=2,且{}为等差数列.

(1)求数列{an}和{bn}的通项公式;

(2)求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)求处的切线方程以及的单调性;

2)对,有恒成立,求的最大整数解;

3)令,若有两个零点分别为的唯一的极值点,求证:.

查看答案和解析>>

同步练习册答案