精英家教网 > 高中数学 > 题目详情

【题目】甲、乙、丙三个车床加工的零件分别为350个,700个,1050个,现用分层抽样的方法随机抽取6个零件进行检验.

1)从抽取的6个零件中任意取出2个,已知这两个零件都不是甲车床加工的,求其中至少有一个是乙车床加工的零件;

2)从抽取的6个零件中任意取出3个,记其中是乙车床加工的件数为X,求X的分布列和期望.

【答案】1;(2)分布列如图所示,.

【解析】

试题本题主要考查分层抽样、条件概率、离散型随机变量的分布列和数学期望等基础知识,同时考查分析问题解决问题的的能力和计算求解能力.第一问,利用分层抽样中,列出表达式,解出每一层的零件个数,本问属于条件概率,,先根据条件求,再求;第二问,本问属于离散型随机变量的分布列和数学期望问题,先写出随机变量X的可能取值,再利用超几何分布的概率公式计算出每种情况的概率,列出分布列,用求数学期望.

试题解析:()由抽样方法可知,从甲、乙、丙三个车床抽取的零件数分别为123

从抽取的6个零件中任意取出2个,记事件已知这两个零件都不是甲车床加工点A,事件其中至少有一个是乙车床加工的B,则

所求概率为

X的可能取值为012

i012

X的分布列为

X

0

1

2

P

0.2

0.6

0.2

X的期望为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在极坐标系中,曲线C1C2的极坐标方程分别为ρ=-2cosθρcos1.

1)求曲线C1C2的公共点的个数;

2)过极点作动直线与曲线C2相交于点Q,在OQ上取一点P,使|OP|·|OQ|2,求点P的轨迹,并指出轨迹是什么图形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为M是椭圆C的上顶点,,F2是椭圆C的焦点,的周长是6.

(Ⅰ)求椭圆C的标准方程;

(Ⅱ)过动点P(1,t)作直线交椭圆CAB两点,且|PA|=|PB|,过P作直线l,使l与直线AB垂直,证明:直线l恒过定点,并求此定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知变量之间的线性回归方程为,且变量之间的一-组相关数据如下表所示,则下列说法错误的是( )

A.可以预测,当时,B.

C.变量之间呈负相关关系D.该回归直线必过点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司计划在迎春节联欢会中设一项抽奖活动:在一个不透明的口袋中装入外形一样号

码分别为1,2,3,…,10的十个小球。活动者一次从中摸出三个小球,三球号码有且仅有两个连号的为三等奖,奖金30元;三球号码都连号为二等奖,奖金60元;三球号码分别为1,5,10为一等奖,奖金240元;其余情况无奖金。

(1)求员工甲抽奖一次所得奖金ξ的分布列与期望;

(2)员工乙幸运地先后获得四次抽奖机会,他得奖次数的方差是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)设,若有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,给出下列四个命题:

的最小正周期为

的图象关于直线对称

在区间上单调递增

的值域为

在区间上有6个零点

其中所有正确的编号是(

A.②④B.①④⑤C.③④D.②③⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代在珠算发明之前多是用算筹为工具来记数、列式和计算的.算筹实际上是一根根相同长度的小木棍,如图,算筹表示数19的方法有“纵式”和“横式”两种,规定个位数用纵式,十位数用横式,百位数用纵式,千位数用横式,万位数用纵式,…,以此类推,交替使用纵横两式.例如:627可以表示为“.如果用算筹表示一个不含“0”且没有重复数字的三位数,这个数至少要用7根小木棍的概率为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的长轴长为,焦距为2,抛物线的准线经过椭圆的左焦点.

1)求椭圆与抛物线的方程;

2)直线经过椭圆的上顶点且与抛物线交于两点,直线与抛物线分别交于点(异于点),(异于点),证明:直线的斜率为定值.

查看答案和解析>>

同步练习册答案