【题目】已知二次函数f(x)=ax2+bx+c(a≠0)的图象过点(0,1)且与x轴有唯一的交点(﹣1,0). (Ⅰ)求f(x)的表达式;
(Ⅱ)在(Ⅰ)的条件下,设函数F(x)=f(x)﹣mx,若F(x)在区间[﹣2,2]上是单调函数,求实数m的取值范围;
(Ⅲ)设函数g(x)=f(x)﹣kx,x∈[﹣2,2],记此函数的最小值为h(k),求h(k)的解析式.
【答案】解:(Ⅰ)依题意得c=1, ,b2﹣4ac=0 解得a=1,b=2,c=1,
从而f(x)=x2+2x+1;
(Ⅱ)F(x)=x2+(2﹣m)x+1图象的对称轴为直线 ,图象开口向上,
当 或 ,即m≤﹣2或m≥6时,F(x)在[﹣2,2]上单调,
故实数m的取值范围为(﹣∞,﹣2]∪[6,+∞);
(Ⅲ)g(x)=x2+(2﹣k)x+1图象的对称轴为直线 ,图象开口向上
当 ,即k≤﹣2时,F(x)在[﹣2,2]上单调递增,
此时函数F(x)的最小值g(k)=F(﹣2)=2k+1
当 即﹣2<k≤6时,F(x)在 上递减,在 上递增
此时函数F(x)的最小值 ;
当 即k>6时,F(x)在[﹣2,2]上单调递减,
此时函数F(x)的最小值g(k)=F(2)=9﹣2k;
综上,函数F(x)的最小值
【解析】(I)依题意得c=1, ,b2﹣4ac=0,解方程组求出a,b,c值,可得f(x)的表达式;(Ⅱ)函数F(x)=x2+(2﹣m)x+1图象的对称轴为直线 ,图象开口向上,若F(x)在区间[﹣2,2]上是单调函数,则区间在对称轴的一侧,进而得到实数m的取值范围;(Ⅲ)g(x)=x2+(2﹣k)x+1图象的对称轴为直线 ,图象开口向上,不同情况下g(x)在区间[﹣2,2]上单调性,进而可得函数的最小值为h(k)的解析式.
科目:高中数学 来源: 题型:
【题目】“中国人均读书4.3本(包括网络文学和教科书),比韩国的11本.法国的20本.日本的40本.犹太人的64本少得多,是世界上人均读书最少的国家.”这个论断被各种媒体反复引用.出现这样的统计结果无疑是令人尴尬的,而且和其他国家相比,我国国民的阅读量如此之低,也和我国是传统的文明古国.礼仪之邦的地位不相符.某小区为了提高小区内人员的读书兴趣,特举办读书活动,准备进一定量的书籍丰富小区图书站,由于不同年龄段需看不同类型的书籍,为了合理配备资源,现对小区内看书人员进行年龄调查,随机抽取了一天名读书者进行调查,将他们的年龄分成6段: , , , , , 后得到如图所示的频率分布直方图.问:
(1)估计在40名读书者中年龄分布在的人数;
(2)求40名读书者年龄的平均数和中位数;
(3)若从年龄在的读书者中任取2名,求恰有1名读书者年龄在的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现如今网上购物已经习以为常,变成人们日常生活的一部分,冲击着人们的传统消费习惯、思维和生活方式,以其特殊的优势而逐渐深入人心.某市场调研机构对在“双十一”购物的名年龄在岁的消费者进行了年龄段和性别分布的调查,其部分结果统计如下表:
年龄(岁) | |||||
女 | 70 | 50 | 40 | 30 | 20 |
男 | 30 | 20 | 15 | 10 |
(1)若按年龄用分层抽样的方法抽取84个人,其中在内抽取了36人,求的值.
(2)在(1)的条件下,用分层抽样的方法在岁的消费者中抽取一个容量为8的本,将该样本看成一个总体,从中任取3人,记表示抽得女性消费者的人数,求随机变量的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱中, , , 分别为棱的中点.
(1)在平面内过点作平面交于点,并写出作图步骤,但不要求证明.
(2)若侧面侧面,求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某电子公司开发一种智能手机的配件,每个配件的成本是15元,销售价是20元,月平均销售件,通过改进工艺,每个配件的成本不变,质量和技术含金量提高,市场分析的结果表明,如果每个配件的销售价提高的百分率为,那么月平均销售量减少的百分率为,记改进工艺后电子公司销售该配件的月平均利润是(元).
(1)写出与的函数关系式;
(2)改进工艺后,试确定该智能手机配件的售价,使电子公司销售该配件的月平均利润最大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2x2﹣kx﹣4在区间[﹣2,4]上具有单调性,则k的取值范围是( )
A.[﹣8,16]
B.(﹣∞,﹣8]∪[16,+∞)
C.(﹣∞,﹣8)∪(16,+∞)
D.[16,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列每组函数是同一函数的是( )
A.f(x)=x0与f(x)=1
B.f(x)= ﹣1与f(x)=|x|﹣1
C.f(x)= 与f(x)=x﹣2
D.f(x)= 与f(x)=
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且 =2csinA
(1)确定角C的大小;
(2)若c= ,且△ABC的面积为 ,求a+b的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com