【题目】若函数为定义域上单调函数,且存在区间(其中),使得当时,的值域恰为,则称函数是上的正函数,区间叫做等域区间.如果函数是上的正函数,则实数的取值范围为 ▲ .
科目:高中数学 来源: 题型:
【题目】下列是合情推理的是( )
①由正三角形的性质类比出正三棱锥的有关性质;
②由正方形矩形的内角和是,归纳出所有四边形的内角和都是;
③三角形内角和是,四边形内角和是,五边形内角和是,由此得出凸边形内角和是;
④小李某次数学考试成绩是90分,由此推出小李的全班同学这次数学考试的成绩都是90分.
A.①②B.①②③C.①②④D.②③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱锥中,底面ABC,M是 BC的中点,若底面ABC是边长为2的正三角形,且PB与底面ABC所成的角为. 求:
(1)三棱锥的体积;
(2)异面直线PM与AC所成角的大小. (结果用反三角函数值表示)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2017-2018学年安徽省六安市第一中学高三上学期第二次月考)已知函数是偶函数.
(1)求的值;
(2)若函数的图象与直线没有交点,求的取值范围;
(3)若函数,是否存在实数使得的最小值为0,若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,且椭圆上一点与椭圆的两个焦点构成的三角形周长为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线与椭圆交于,两点,且以为直径的圆过椭圆的右顶点,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校艺术节对同一类的,,,四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:
甲说:“是或作品获得一等奖”;
乙说:“作品获得一等奖”;
丙说:“,两项作品未获得一等奖”;
丁说:“是作品获得一等奖”.
若这四位同学中只有两位说的话是对的,则获得一等奖的作品是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙、丙、丁、戊和己6人围坐在一张正六边形的小桌前,每边各坐一人.已知:①甲与乙正面相对;②丙与丁不相邻,也不正面相对.若己与乙不相邻,则以下选项正确的是( )
A.若甲与戊相邻,则丁与己正面相对B.甲与丁相邻
C.戊与己相邻D.若丙与戊不相邻,则丙与己相邻
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com