精英家教网 > 高中数学 > 题目详情

【题目】已知平面直角坐标系xOy,在x轴的正半轴上,依次取点,并在第一象限内的抛物线上依次取点,使得都为等边三角形,其中为坐标原点,设第n个三角形的边长为

,并猜想不要求证明);

,记为数列中落在区间内的项的个数,设数列的前m项和为,试问是否存在实数,使得对任意恒成立?若存在,求出的取值范围;若不存在,说明理由;

已知数列满足:,数列满足:,求证:

【答案】,;⑵;⑶详见解析

【解析】

,进而猜想出

.,可得利用等比数列的求和公式即可得出.根据对任意恒成立即可得出范围.

,记

可得

,可得,根据当时,即可得出.

解:

猜想

,由

对任意恒成立

证明:,记

,记

时,可知:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点EFEF=,则下列结论中错误的是(

A.ACBEB.EF平面ABCD

C.三棱锥A-BEF的体积为定值D.异面直线AE,BF所成的角为定值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了鼓励学生热心公益,服务社会,成立了“慈善义工社”.2017年12月,该校“慈善义工社”为学生提供了4次参加公益活动的机会,学生可通过网路平台报名参加活动.为了解学生实际参加这4次活动的情况,该校随机抽取100名学生进行调查,数据统计如下表,其中“√”表示参加,“×”表示未参加.

(Ⅰ)从该校所有学生中任取一人,试估计其2017年12月恰参加了2次学校组织的公益活动的概率;

(Ⅱ)若在已抽取的100名学生中,2017年12月恰参加了1次活动的学生比4次活动均未参加的学生多17人,求的值;

(Ⅲ)若学生参加每次公益活动可获得10个公益积分,试估计该校4000名学生中,2017年12月获得的公益积分不少于30分的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】党的十九大报告指出,建设生态文明是中华民族永续发展的千年大计.而清洁能源的广泛使用将为生态文明建设提供更有力的支撑.沼气作为取之不尽、用之不竭的生物清洁能源,在保护绿水青山方面具有独特功效.通过办沼气带来的农村“厕所革命”,对改善农村人居环境等方面,起到立竿见影的效果.为了积极响应国家推行的“厕所革命”,某农户准备建造一个深为2米,容积为32立方米的长方体沼气池,如果池底每平方米的造价为150元,池壁每平方米的造价为120元,沼气池盖子的造价为3000元,问怎样设计沼气池能使总造价最低?最低总造价是多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)令,求函数的零点;

2)令,求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某服装厂每天的固定成本是30000元,每天最大规模的生产量是.每生产一件服装,成本增加100元,生产服装的收入函数是,记分别为每天生产服装的利润和平均利润

1时,每天生产量为多少时,利润有最大值;

2每天生产量为多少时,平均利润有最大值,并求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,过抛物线上一点作抛物线的切线轴于点,交轴于点,当时,

1)判断的形状,并求抛物线的方程;

2)若两点在抛物线上,且满足,其中点,若抛物线上存在异于的点,使得经过三点的圆和抛物线在点处有相同的切线,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 平面 .

(1)求证: 平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题14分)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨)标准煤的几组对照数据:


3

4

5

6


2.5

3

4

4.5

1)请画出上表数据的散点图;并指出xy 是否线性相关;

2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程

3)已知该厂技术改造前100吨甲产品能耗为90吨标准煤,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?

(参考:用最小二乘法求线性回归方程系数公式

查看答案和解析>>

同步练习册答案