精英家教网 > 高中数学 > 题目详情
如图,在四棱锥中,底面是矩形,是棱的中点.

(1)求证:平面
(2)求证:平面
(3)在棱上是否存在一点,使得平面平面?若存在,求出的值;若不存在,说明理由.
(1)详见解析;(2)详见解析;(3)存在,且.

试题分析:(1)先由底面为矩形得到,然后利用直线与平面平行的判定定理即可证明平面;(2)先证平面,于是得到,然后再利用三线合一得到,然后利用直线与平面垂直的判定定理即可得到平面;(3)利用(2)中的结论平面,结合条件平面平面,得到平面,连接于点,利用直线与平面平行的性质定理得到,最后利用相似三角形来求的值.
试题解析:(1)因为底面是矩形,
所以
又因为平面平面
所以平面
(2)因为
所以平面
又因为平面
所以.
因为,且中点,
所以.
又因为
所以平面.
(3)如图,连接于点,在平面中过于点,连接.

因为平面
所以平面.
又因为平面
所以平面平面.
在矩形中,因为
所以.
中,因为
所以.
则在棱上存在点,使得平面平面,此时.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知四棱锥P-ABCD中,PB⊥平面ABCD,底面ABCD是直角梯形,∠ABC=∠BCD=90°,PB=BC=CD=AB.Q是PC上的一点.

⑴求证:平面PAD⊥面PBD;
⑵当Q在什么位置时,PA∥平面QBD?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直三棱柱中,,,求:

(1)异面直线所成角的余弦值;
(2)直线到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在锥体PABCD中,ABCD是边长为1的菱形,且∠DAB=60°,PA=PD=,PB=2,E、F分别是BC、PC的中点.证明:AD⊥平面DEF.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(2014·黄冈模拟)设a,b是平面α内两条不同的直线,l是平面α外的一条直线,则“l⊥a,l⊥b”是“l⊥α”的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是两条不重合的直线,是三个不重合的平面,则的一个充分条件是(     )
A.
B.
C.
D.是异面直线,

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设平面,直线,则“”是“”的(   )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是三个不重合的平面, 是直线,给出下列四个命题:①若;②若;③若上有两点到的距离相等,则;④若,则其中正确命题的序号 (    )
A.②④B.①④C.②③D.①②

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,b,c是空间三条不同的直线,是空间两个不同的平面,则下列命题不成立的是(    )
A.当时,若,则
B.当,且内的射影时,若b⊥c,则⊥b
C.当时,若b⊥,则
D.当时,若c∥,则b∥c

查看答案和解析>>

同步练习册答案