精英家教网 > 高中数学 > 题目详情

【题目】要得到函数y=sinx的图象,只要将函数y=cos2x的图象(  )
A.向右平移个单位长度,再将各点的横坐标伸长为原来的4倍,纵坐标不变
B.向左平移个单位长度,再将各点的横坐标缩短为原来的倍,纵坐标不变
C.向左平移个单位长度,再将各点的横坐标伸长为原来的4倍,纵坐标不变
D.向右平移个单位长度,再将各点的横坐标缩短到原来的 , 纵坐标不变

【答案】A
【解析】解:将函数y=cos2x=sin(2x+)的图象向右平移个单位长度,可得y=sin[2(x﹣)+]=sin2x的图象,
再将各点的横坐标伸长为原来的4倍,纵坐标不变,可得函数y=sinx的图象,
故选:A.
由条件利用函数y=Asin(ωx+φ)的图象变换规律,诱导公式,即可得出结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某市市民用水拟实行阶梯水价,每人用水量不超过立方米的部分按/立方米收费,超出立方米的部分按/立方米收费,从该市随机调查了位市民,获得了他们某月的用水量数据,整理得到如下频率分布直方图,并且前四组频数成等差数列,

(Ⅰ)求的值及居民用水量介于的频数;

(Ⅱ)根据此次调查,为使以上居民月用水价格为/立方米,应定为多少立方米?(精确到小数点后位)

(Ⅲ)若将频率视为概率,现从该市随机调查名居民的用水量,将月用水量不超过立方米的人数记为,求其分布列及其均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点F1(﹣c,0),F2(c,0)分别是椭圆C: (a>b>0)的左右焦点,经过F1做x轴的垂线交椭圆C的上半部分于点P,过点F2作直线PF2垂线交直线 于点Q.
(Ⅰ)如果点Q的坐标是(4,4),求此时椭圆C的方程;
(Ⅱ)证明:直线PQ与椭圆C只有一个交点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于x的不等式ax2+bx+2>0的解集为{x|-1<x<2},则关于x的不等式bx2-ax-2>0的解集为(  )

A. {x|-2<x<1} B. {x|x>1或x<-2}

C. {x|x>2或x<-1} D. {x|x<-1或x>1}

【答案】B

【解析】

利用不等式的解集与方程根的关系,求出a,b的值,即可求得不等式bx2﹣ax﹣2>0的解集.

关于x的不等式ax2+bx+2>0的解集为(﹣1,2),

﹣1,2是ax2+bx+2=0(a<0)的两根

∴a=﹣1,b=1

不等式bx2﹣ax﹣2>0为x2+x﹣2>0,

∴x<﹣2或x>1

故选:B.

【点睛】

(1)二次函数图象与x轴交点的横坐标、二次不等式解集的端点值、一元二次方程的解是同一个量的不同表现形式。

2)二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,而二次函数又是“三个二次”的核心,通过二次函数的图象贯穿为一体.有关二次函数的问题,利用数形结合的方法求解,密切联系图象是探求解题思路的有效方法.

型】单选题
束】
6

【题目】已知a,b,c分别是△ABC的内角A,B,C的对边,若△ABC的周长为2(+1),且sin B+sin C=sin A,则a= (  )

A. B. 2 C. 4 D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn,S4=40,Sn=210,Sn-4=130,则n=(  )

A.12 B.14 C.16 D.18

【答案】B

【解析】Sn-Sn-4=an+an-1+an-2+an-3=80,S4=a1+a2+a3+a4=40,所以4(a1+an)=120,a1+an=30,由Sn=210,得n=14.

型】单选题
束】
9

【题目】等比数列{an}是递减数列,前n项的积为Tn,若T13=4T9,则a8a15=(  )

A. 2 B. ±2 C. 4 D. ±4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为R的偶函数f(x)满足对任意的x∈R,有f(x+2)=f(x)﹣f(1),且当x∈[2,3]时,f(x)=﹣(x﹣2)2+1.若函数y=f(x)﹣a(x﹣)在(0,+∞)上恰有三个零点,则实数a的取值范围是(  )
A.( , 3)
B.(
C.(3,12)
D.( , 12)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】第一次大考后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀,统计成绩后,得到如下列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为

(I)请完成列联表

优秀

非优秀

合计

甲班

10

乙班

30

合计

110

(Ⅱ)根据列联表的数据能否在犯错误的概率不超过0.01的前提下认为成绩与班级有关系?

参考公式和临界值表

,其中

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5).

(1)若,且a分别与垂直,求向量a的坐标;

(2)若,且,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分14分)已知过原点的动直线与圆 相交于不同的两点

1)求圆的圆心坐标;

2)求线段的中点的轨迹的方程;

3)是否存在实数,使得直线 与曲线只有一个交点?若存在,求出的取值范围;若不存在,说明理由.

查看答案和解析>>

同步练习册答案