精英家教网 > 高中数学 > 题目详情
8.在平面直角坐标系xOy中,已知点A(0,2),B(0,1),D(t,0)(t>0),M为线段AD上的动点.若AM≤2BM恒成立,则正实数t的最小值为4.

分析 设M(x,y),由点M在线段AD上,得$\frac{x}{t}+\frac{y}{2}=1$,即2x+ty-2t=0,由AM≤2BM,得(x-$\frac{4}{3}$)2+(y+$\frac{2}{3}$)2≥$\frac{20}{9}$,
依题意,线段AD与圆(x-$\frac{4}{3}$)2+(y+$\frac{2}{3}$)2≥$\frac{20}{9}$至多有一个公共点,故$\frac{|\frac{8}{3}-\frac{8}{3}t|}{\sqrt{4+{t}^{2}}}$≥$\frac{2\sqrt{5}}{3}$,由此入手即可求出正实数t的最小值.

解答 解:设M(x,y),由点M在线段AD上,得$\frac{x}{t}+\frac{y}{2}=1$,
即2x+ty-2t=0,
由AM≤2BM,得(x-$\frac{4}{3}$)2+(y+$\frac{2}{3}$)2≥$\frac{20}{9}$,
依题意,线段AD与圆(x-$\frac{4}{3}$)2+(y+$\frac{2}{3}$)2≥$\frac{20}{9}$至多有一个公共点,
故$\frac{|\frac{8}{3}-\frac{8}{3}t|}{\sqrt{4+{t}^{2}}}$≥$\frac{2\sqrt{5}}{3}$,
解得t≤$\frac{16-10\sqrt{3}}{11}$或t≥$\frac{16+10\sqrt{3}}{11}$,
∵t是使AM≤2BM恒成立的最小正整数,∴t=4,
故答案为:4.

点评 本题考查直线与圆的方程,考查点到直线距离公式的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知f(x)满足2f(x)+f($\frac{1}{x}$)=3x,求f(2)=$\frac{7}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.数列{an}的前n项和为Sn,.Sn+an=-$\frac{1}{2}$n2-$\frac{3}{2}$n+1(n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若cn=${(\frac{1}{2})^n}$-an,p=$\sum_{i=1}^{2013}{\frac{{c_i^2+{c_i}+1}}{{c_i^2+{c_i}}}}$,求不超过P的最大的整数值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(1)设A={x|x是小于9的正整数},B={1,2,3},求A∩B.
(2)已知集合A={x|3≤x<7},B={x|2<x<10},求(∁RA)∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知极坐标系的极点在直角坐标系的原点,极轴与x轴的正半轴重合,直线l的极坐标方程为$ρsin(θ+\frac{π}{4})=2\sqrt{2}$.在直角坐标系中,曲线C的参数方程为$\left\{\begin{array}{l}x=2+\sqrt{3}cosθ\\ y=sinθ\end{array}$(θ为参数).求曲线C上的点到直线l的距离的最大值及相应点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在△ABC中,角A,B,C的对边分别是a,b,c,若b=asinB,则A等于(  )
A.60°B.90°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数y=cos2x的单调增区间是(  )
A.(2kπ-π,2kπ),k∈ZB.(2kπ-$\frac{π}{2}$,2kπ),k∈ZC.(kπ-π,kπ),k∈ZD.(kπ-$\frac{π}{2}$,kπ),k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知命题p:?x∈N,x2的个位数不是2,命题q:?x0∈R,lgsinx0>0,则下列命题中的真命题是(  )
A.(¬p)∨qB.p∧qC.(¬p)∨(¬q)D.(¬p)∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知a∈(0,$\frac{π}{2}$),且2sin2α-sinαcosα-3cos2α=0,则$\frac{sin(α+\frac{π}{2})}{sin2α+cos2α+1}$$\frac{\sqrt{13}}{10}$.

查看答案和解析>>

同步练习册答案