精英家教网 > 高中数学 > 题目详情
以下四个关系:φ∈{0},0∈φ,{φ}⊆{0},φ
?
{0},其中正确的个数是(  )
A、1B、2C、3D、4
考点:集合的包含关系判断及应用
专题:常规题型,集合
分析:依据集合与集合,元素与集合的关系表示对四个命题一一判断.
解答: 解:φ∈{0}错误,应该为φ⊆{0},
0∈φ错误,应该为0∉φ;
{φ}⊆{0}错误,
φ
?
{0}正确;
故选A.
点评:本题考查了集合与集合,元素与集合的关系,重要在于空集的认识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F,离心率为
3
3
,过点F且与x轴垂直的直线被椭圆截得的线段长为
4
3
3

(1)求椭圆的方程;
(2)设A,B分别为椭圆的左右顶点过点F且斜率为k的直线与椭圆交于C,D两点,若
AC
DB
+
AD
CB
=8,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
3x+6,x≥-2
-6-3x,x<-2
,若不等式f(x)≥2x-m恒成立,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρsin(θ+
π
4
)=2
2
,曲线C2的参数方程为
x=cosθ
y=sinθ
(θ为参数).
(Ⅰ)求C1的直角坐标方程,它表示什么曲线?
(Ⅱ)求C2上的点到C1的最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列正确命题的序号是
 

(1)等比数列1,a,a2,a3,…(a≠0)的前n项Sn=
1-an
1-a

(2)设{an}( n∈N)是等差数列,Sn是其前n项和,S5<S6,S6=S7>S8则S6与S7均为Sn的最大值
(3)等比数列{an}中,若a1<a2<a3,则数列{an}是递增数列
(4)若a,b,c是等比数列,则lga,lgb,lgc是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

在1到100的自然数中有多少个能被2或3整除的数?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是定义在R上的奇函数,且f(2+x)=f(2-x),则f(4)=(  )
A、4B、2C、0D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知锐角△ABC中,sinA=
3
5
,cosB=
12
13
,AB=8,则△ABC的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某市的一家报刊摊点,从报社买进一种晚报的价格是每份是0.20元,卖出的价格是每份0.30元,卖不掉的报纸可以以每份0.05元的价格退回报社.在一个月(30天计算)里,有20天每天卖出量可达400份,其余10天每天只能卖出250份,但每天从报社买进的份数必须相同,为使每月所获利润最大,这个摊主每天从报社买进
 
份晚报.

查看答案和解析>>

同步练习册答案