4£®ÒÑÖªÇúÏßC1µÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=5cos¦Õ}\\{y=\frac{5\sqrt{22}}{22}sin¦Õ}\end{array}\right.$£¨¦ÕΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢×ø±êϵ£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌÊǦÑsin£¨$¦È-\frac{¦Ð}{6}$£©=0£¬ÇÒÇúÏßC1ÓëÇúÏßC2ÔÚµÚÒ»ÏóÏ޵Ľ»µãΪA£¬³¤·½ÐÎABCDµÄ¶¥µã¶¼ÔÚC1ÉÏ£¨ÆäÖÐA¡¢B¡¢C¡¢DÒÀ´ÎÄæʱÕë´ÎÐòÅÅÁУ©ÇóA¡¢B¡¢C¡¢DµÄÖ±½Ç×ø±ê£®

·ÖÎö ÓÉÇúÏßC1µÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=5cos¦Õ}\\{y=\frac{5\sqrt{22}}{22}sin¦Õ}\end{array}\right.$£¨¦ÕΪ²ÎÊý£©£¬ÀûÓÃcos2¦Õ+sin2¦Õ=1¼´¿É»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌÊǦÑsin£¨$¦È-\frac{¦Ð}{6}$£©=0£¬»¯Îª$\frac{\sqrt{3}}{2}¦Ñsin¦È-\frac{1}{2}¦Ñcos¦È$=0£¬ÀûÓÃ$\left\{\begin{array}{l}{x=¦Ñcos¦È}\\{y=¦Ñsin¦È}\end{array}\right.$¼´¿ÉµÃ³öÖ±½Ç×ø±ê·½³Ì£¬ÁªÁ¢½â³ö¼´¿ÉµÃ³ö£®

½â´ð ½â£ºÓÉÇúÏßC1µÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=5cos¦Õ}\\{y=\frac{5\sqrt{22}}{22}sin¦Õ}\end{array}\right.$£¨¦ÕΪ²ÎÊý£©£¬»¯ÎªÖ±½Ç×ø±ê·½³Ì£º$\frac{{x}^{2}}{25}$+$\frac{22{y}^{2}}{25}$=1£¬
ÇúÏßC2µÄ¼«×ø±ê·½³ÌÊǦÑsin£¨$¦È-\frac{¦Ð}{6}$£©=0£¬»¯Îª$\frac{\sqrt{3}}{2}¦Ñsin¦È-\frac{1}{2}¦Ñcos¦È$=0£¬¿ÉµÃ£º$\sqrt{3}$y-x=0£®
ÁªÁ¢$\left\{\begin{array}{l}{x-\sqrt{3}y=0}\\{{x}^{2}+22{y}^{2}=25}\end{array}\right.$£¬½»µã$\left\{\begin{array}{l}{x=\sqrt{3}}\\{y=-1}\end{array}\right.$£¬»ò$\left\{\begin{array}{l}{x=-\sqrt{3}}\\{y=-1}\end{array}\right.$£¬
È¡µãA$£¨\sqrt{3}£¬1£©$£®
ÓÉÌâÒâ¿ÉµÃ£ºB$£¨-\sqrt{3}£¬1£©$£¬C$£¨-\sqrt{3}£¬-1£©$£¬D$£¨\sqrt{3}£¬-1£©$£®

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢Ö±ÏßÓëÍÖÔ²µÄ½»µã£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖªf£¨x£©ÎªÆ溯Êý£¬f£¨x£©=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}£¨x+1£©£¬x¡Ê[0£¬1£©}\\{1-|x-3|£¬x¡Ê[1£¬+¡Þ£©}\end{array}\right.$£¬·½³Ìf£¨x£©=a£¨0£¼a£¼1£©µÄËùÓÐʵÊý¸ùÖ®ºÍΪ£¨¡¡¡¡£©
A£®1-2aB£®2a-1C£®£¨$\frac{1}{2}$£©a-1D£®1-£¨$\frac{1}{2}$£©a

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖªÅ×ÎïÏߵĶ¥µãÔÚÔ­µã£¬½¹µãÔÚxÖáÉÏ£¬¡÷ABCÈý¸ö¶¥µã¶¼ÔÚÅ×ÎïÏßÉÏ£¬ÇÒ¡÷ABCµÄÖØÐÄΪÅ×ÎïÏߵĽ¹µã£¬ÈôBC±ßËùÔÚÖ±Ïߵķ½³ÌΪ4x+y-20=0£¬ÔòÅ×ÎïÏß·½³ÌΪy2=16x£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®µÈ²îÊýÁÐ{an}Âú×ãa1+a9=8£¬Ôòa4+a5+a6=£¨¡¡¡¡£©
A£®16B£®14C£®12D£®10

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£¬ÒÑÖªa=bcosC+$\frac{\sqrt{3}}{3}$csinB£®
£¨1£©ÇóBµÄ´óС£»
£¨2£©Çósin2A+sin2CµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÒÑÖªº¯Êýy=f£¨x£©ÊǶ¨ÒåÔÚRÉϵÄżº¯Êý£¬ÇÒf£¨x+1£©=f£¨x-1£©£¬µ±x¡Ê[0£¬1]ʱ£¬f£¨x£©=2x-1£¬Ôòº¯Êýg£¨x£©=f£¨x£©-ln$\frac{x}{2}$µÄÁãµã¸öÊýΪ4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÊµÊýx£¬yÂú×ã$\left\{\begin{array}{l}{x¡Ýa}\\{y¡Ýx}\\{x+y¡Ü2}\end{array}\right.$£¨a£¼1£©£¬ÇÒz=2x+yµÄ×î´óÖµÊÇ×îСֵµÄ4±¶£¬ÔòaµÄÖµÊÇ£¨¡¡¡¡£©
A£®$\frac{2}{11}$B£®$\frac{1}{4}$C£®$\frac{1}{2}$D£®$\frac{11}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÎªµÃµ½º¯Êý$y=2sin£¨2x+\frac{¦Ð}{4}£©$µÄͼÏó£¬Ö»Ð轫º¯Êýy=2cos2xµÄͼÏ󣨡¡¡¡£©
A£®Ïò×óƽÒÆ$\frac{¦Ð}{4}$µ¥Î»B£®ÏòÓÒƽÒÆ$\frac{¦Ð}{4}$µ¥Î»C£®Ïò×óƽÒÆ$\frac{¦Ð}{8}$µ¥Î»D£®ÏòÓÒƽÒÆ$\frac{¦Ð}{8}$µ¥Î»

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Èô¼¯ºÏM={x|1£¼x£¼4}£¬N={x|x2-7x£¼0}£¬ÔòM¡ÉNµÈÓÚ£¨¡¡¡¡£©
A£®{x|0£¼x£¼4}B£®{x|1£¼x£¼7}C£®{x|1£¼x£¼4}D£®{x|4£¼x£¼7}

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸