精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=2sin(ωx+φ)(ω>0,﹣ <φ< )的部分图象如图所示;
(1)求ω,φ;
(2)将y=f(x)的图象向左平移θ(θ>0)个单位长度,得到y=g(x)的图象,若y=g(x)图象的一个对称点为( ,0),求θ的最小值.
(3)对任意的x∈[ ]时,方程f(x)=m有两个不等根,求m的取值范围.

【答案】
(1)解:根据函数f(x)=2sin(ωx+φ)(ω>0,﹣ <φ< )的部分图象,可得 =

求得ω=2.

再根据五点法作图可得2 +φ= ,求得φ=﹣ ,∴f(x)=2sin(2x﹣


(2)解:将y=f(x)的图象向左平移θ(θ>0)个单位长度,得到y=g(x)=2sin[2(x+θ)﹣ ]=2sin(2x+2θ﹣ )的图象,

∵y=g(x)图象的一个对称点为( ,0),∴2 +2θ﹣ =kπ,k∈Z,∴θ= ,故θ的最小正值为


(3)解:对任意的x∈[ ]时,2x﹣ ∈[ ],sin(2x﹣ )∈[﹣ ,1],即f(x)∈[﹣ ,2],

∵方程f(x)=m有两个不等根,结合函数f(x),x∈[ ]时的图象可得,1≤m<2.


【解析】(1)用五点法做函数y=Asin(ωx+φ)在一个周期上的简图.(2)利用y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,求得θ的最小正值.(3)利用正弦函数的定义域和值域,结合函数f(x)的图象,求得m的取值范围.
【考点精析】认真审题,首先需要了解函数y=Asin(ωx+φ)的图象变换(图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设{an}是一个公差不为零的等差数列,其前n项和为Sn , 已知S9=90,且a1 , a2 , a4成等比数列.
(1)求数列{an}的通项公式;
(2)设bn= ,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中 ).

(Ⅰ)当时,若对任意恒成立,求实数的取值范围;

(Ⅱ)设函数的图象在两点处的切线分别为,若 ,且,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线y=x+b与曲线x= 恰有一个公共点,则b的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了培养学生的安全意识,某中学举行了一次安全自救的知识竞赛活动,共有800 名学生参加了这次竞赛.为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100 分)进行统计,得到如下的频率分布表,请你根据频率分布表解答下列问题:

序号
(i)

分组
(分数)

组中值
(Gi)

频数
(人数)

频率
(Fi)

1

[60,70)

65

0.10

2

[70,80)

75

20

3

[80,90)

85

0.20

4

[90,100)

95

合计

50

1


(1)求出频率分布表中①、②、③、④、⑤的值;
(2)为鼓励更多的学生了解“安全自救”知识,成绩不低于85分的学生能获奖,请估计在参加的800名学生中大约有多少名学生获奖?
(3)在上述统计数据的分析中,有一项指标计算的程序框图如图所示,则该程序的功能是什么?求输出的S的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在任意三角形ABC内任取一点Q,使SABQ SABC的概率为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】12分)

如图,四棱锥P-ABCD中,侧面PAD为等比三角形且垂直于底面ABCD EPD的中点.

1)证明:直线 平面PAB

2)点M在棱PC 上,且直线BM与底面ABCD所成锐角为 ,求二面角M-AB-D的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= cosx(sinx+cosx). (Ⅰ)若0<α< ,且sinα= ,求f(α)的值;
(Ⅱ)求函数f(x)的最小正周期及单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】拖延症总是表现在各种小事上,但日积月累,特别影响个人发展.某校的一个社会实践调查小组,在对该校学生进行“是否有明显拖延症”的调查中,随机发放了110份问卷.对收回的100份有效问卷进行统计,得到如下列联表:

有明显拖延症

无明显拖延症

合计

35

25

60

30

10

40

合计

65

35

100

(Ⅰ)按女生是否有明显拖延症进行分层,已经从40份女生问卷中抽取了8份问卷,现从这8份问卷中再随机抽取3份,并记其中无明显拖延症的问卷的份数为,试求随机变量的分布列和数学期望;

(Ⅱ)若在犯错误的概率不超过的前提下认为无明显拖延症与性别有关,那么根据临界值表,最精确的的值应为多少?请说明理由.

附:独立性检验统计量,其中

独立性检验临界值表:

0.25

0.15

0.10

0.05

0.025

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

同步练习册答案