精英家教网 > 高中数学 > 题目详情

【题目】平面上动点M到直线x=﹣1的距离比它到点F(2,0)的距离少1.
(1)求动点M的轨迹E的方程;
(2)已知点B(﹣1,0),设过点(1,0)的直线l与轨迹E交于不同的两点P、Q,证明:x轴是∠PBQ的角平分线所在的直线.

【答案】
(1)解:因为点M到直线x=﹣1的距离比它到点(2,0)的距离小1,

所以点M到直线x=﹣2的距离等于它到点(2,0)的距离,

因此点M的轨迹为抛物线,方程为y2=8x


(2)解:将y=k(x﹣1)代入y2=8x中,

得k2x2﹣(2k2+8)x+k2=0,

由根与系数的关系得,x1+x2=2+ ,x1x2=1.

+ = =0,

=﹣

∴x轴是∠PBQ的解平分线.

k不存在时,结论同样成立


【解析】(1)把直线x=﹣1向左平移一个单位变为x=﹣2,此时点M到直线x=﹣2的距离等于它到点(2,0)的距离,即可得到点M的轨迹方程.(2)将y=k(x﹣1)代入y2=8x中,得k2x2﹣(2k2+8)x+k2=0,利用根与系数的关系,证明 + =0,即可证明结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形是等腰梯形,平面.

)求证:平面

)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为梯形, 底面 .过作一个平面使得平面.

(1)求平面将四棱锥分成两部分几何体的体积之比;

(2)若平面与平面之间的距离为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正三角形ABC的边长为2,D、E、F分别是BC、CA、AB的中点.
(1)在三角形内部随机取一点P,求满足|PB|≥1且|PC|≥1的概率;
(2)在A、B、C、D、E、F这6点中任选3点,记这3点围成图形的面积为ξ,求随机变量ξ的分布列与数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】判断下列各题中pq的什么条件.

(1)p:|x|=|y|,q:x=y;

(2)p:△ABC是直角三角形,q:△ABC是等腰三角形;

(3)p:四边形的对角线互相平分,q:四边形是矩形;

(4)p:x2+y2=r2(r>0)与直线ax+by+c=0相切,q:c2=(a2+b2)r2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】输入x,求函数y=的值的程序框图如图C17所示.

(1)指出程序框图中的错误之处并写出正确的算法步骤.

(2)重新绘制程序框图,并回答下面提出的问题.

①要使输出的值为7,则输入的x的值应为多少?

②要使输出的值为正数,则输入的x应满足什么条件?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在四棱锥已知 平面且四边形为直角梯形 分别是 的中点.

(I)求证 平面

是线段上的动点当直线所成角最小时求线段的长

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列为等比数列,,公比为,且为数列的前项和.

(1)若,求

(2)若调换的顺序后能构成一个等差数列,求的所有可能值;

(3)是否存在正常数,使得对任意正整数,不等式总成立?若存在,求出的范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列的前项和为,在同一个坐标系中,的部分图象如图所示,则( ).

A. 时,取得最大值 B. 时,取得最大值

C. 时,取得最小值 D. 时,取得最小值

查看答案和解析>>

同步练习册答案