精英家教网 > 高中数学 > 题目详情

【题目】已知,其中常数

1)当时,求函数的极值;

2)若函数有两个零点,求实数的范围;

3)设,在区间内是否存在区间,使函数在区间的值域也是?请给出结论,并说明理由.

【答案】1)极小值0,没有极大值;(2;(3)不存在区间符合要求,理由见解析.

【解析】

1)求出导函数,利用导数研究函数的单调性,求出极值;

2)求出导函数,利用导数研究函数的单调性,极值,得到有两个零点的条件,求出的范围;

3)先根据导数判断单调递增,将在区间的值域也是,转化为有两个大于的不等实根解决问题.

函数的定义域为

1)当时,

上单调递增,又

时,,则上单调递减;

时,,则上单调递增,所以有极小值,没有极大值.

2)令 ,因为,所以

0

因为有两个零点,所以,所以

时因为,所以有两个零点.

(3),假设在区间内是存在区间,使函数在区间的值域也是,因为,当

所以上是增函数,所以,即

即方程有两个大于的不等实根.上述方程等价于

,所以

所以上是增函数,所以上至多一个实数根.

上不可能有两个不等实数根,所以假设不成立,所以不存在区间符合要求.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在三棱柱中, 的中点.

(1)证明: 平面

(2)若,点在平面的射影在上,且侧面的面积为,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,且其离心率为,过坐标原点作两条互相垂直的射线与椭圆分别相交于两点.

1)求椭圆的方程;

2)是否存在圆心在原点的定圆与直线总相切?若存在,求定圆的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】动点到点的距离与到直线的距离的比值为

1)求动点的轨迹的方程;

2)过点的直线与点的轨迹交于两点,设点到直线的距离分别为,当时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在测试中,客观题难题的计算公式为,其中为第题的难度, 为答对该题的人数, 为参加测试的总人数.现对某校高三年级120名学生进行一次测试,共5道客观题.测试前根据对学生的了解,预估了每道题的难度,如下表所示:

测试后,从中随机抽取了10名学生,将他们编号后统计各题的作答情况,如下表所示(“√”表示答对,“×”表示答错):

(1)根据题中数据,将抽样的10名学生每道题实测的答对人数及相应的实测难度填入下表,并估计这120名学生中第5题的实测答对人数;

(2)从编号为1到5的5人中随机抽取2人,求恰好有1人答对第5题的概率;

(3)定义统计量,其中为第题的实测难度, 为第题的预估难度(.规定:若,则称该次测试的难度预估合理,否则为不合理.判断本次测试的难度预估是否合理.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为广泛开展垃圾分类的宣传教育和倡导工作,使市民树立垃圾分类的环保意识,学会垃圾分类的知识,特举办了“垃圾分类知识竞赛".据统计,在为期1个月的活动中,共有两万人次参与网络答题.市文明实践中心随机抽取100名参与该活动的市民,以他们单次答题得分作为样本进行分析,由此得到如图所示的频率分布直方图:

1)求图中a的值及参与该活动的市民单次挑战得分的平均成绩(同一组中数据用该组区间中点值作代表);

2)若垃圾分类答题挑战赛得分落在区间之外,则可获得一等奖奖励,其中s分别为样本平均数和样本标准差,计算可得,若某人的答题得分为96分,试判断此人是否获得一等奖;

3)为扩大本次“垃圾分类知识竞赛”活动的影响力,市文明实践中心再次组织市民组队参场有奖知识竞赛,竞赛共分五轮进行,已知“光速队”与“超能队”五轮的成绩如下表:

成绩

第一轮

第二轮

第三轮

第四轮

第五轮

“光速队”

93

98

94

95

90

“超能队”

93

96

97

94

90

①分别求“光速队”与“超能队”五轮成绩的平均数和方差;

②以上述数据为依据,你认为"光速队”与“超能队”的现场有奖知识竞赛成绩谁更稳定?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的离心率为,椭圆上一点到左右两个焦点的距离之和是4.

1)求椭圆的方程;

2)已知过的直线与椭圆交于两点,且两点与左右顶点不重合,若,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知xy之间的几组数据如表:

x

1

2

3

4

y

1

m

n

4

如表数据中y的平均值为2.5,若某同学对m赋了三个值分别为1.522.5,得到三条线性回归直线方程分别为,对应的相关系数分别为,下列结论中错误的是(

参考公式:线性回归方程中,其中.相关系数

A.三条回归直线有共同交点B.相关系数中,最大

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小区为了调查本小区业主对物业服务满意度的真实情况,对本小区业主进行了调查,调查中问了两个问题1:你的手机尾号是不是奇数?问题2:你是否满意物业的服务?调查者设计了一个随机化装置,其中装有大小、形状和质量完全相同的白球和红球,每个被调查者随机从装置中摸到红球和白球的可能性相同,其中摸到白球的业主回答第一个问题,摸到红球的业主回答第二个问题,回答的人往一个盒子中放一个小石子,回答的人什么都不要做由于问题的答案只有,而且回答的是哪个问题别人并不知道,因此被调查者可以毫无顾虑地给出符合实际情况的答案.已知某小区80名业主参加了问卷,且有47名业主回答了,由此估计本小区对物业服务满意的百分比大约为(

A.85%B.75%C.63.5%D.67.5%

查看答案和解析>>

同步练习册答案