分析 由题意可得,三角形F1F2P是有一个内角为60°角的直角三角形,根据此直角三角形,结合双曲线的离心率的定义即可求得双曲线的离心率.
解答 解:由题设知圆C2的直径为F1F2,则$∠{F_1}P{F_2}=\frac{π}{2}$,又$∠P{F_2}{F_1}=\frac{π}{3}$,
所以$|{P{F_1}}|=\sqrt{3}c$,|PF2|=c,
由双曲线的定义得|PF1|-|PF2|=2a,即$(\sqrt{3}-1)c=2a$,所以$e=\frac{2}{{\sqrt{3}-1}}=\sqrt{3}+1$.
故答案为$\sqrt{3}+1$.
点评 本题考查双曲线的离心率,考查双曲线的定义的运用,属于中档题.
科目:高中数学 来源: 题型:解答题
女性用户 | 分值区间 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
频数 | 20 | 40 | 80 | 50 | 10 | |
男性用户 | 分值区间 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
频数 | 45 | 75 | 90 | 60 | 30 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | P | B. | Q | C. | {-1,1} | D. | {0,1} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com