精英家教网 > 高中数学 > 题目详情
如图,已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0)d的离心率为
2
2
,以该椭圆上的点和椭圆的左、右焦点F1、F2为顶点的三角形的周长为4(
2
+1
).一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D.
(1)求椭圆和双曲线的标准方程;
(2)是否存在常熟λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,求λ的值,若不存在,请说明理由.
(1)由题意知,椭圆离心率为
c
a
=
2
2
,得a=
2
c

因为2a+2c=4(
2
+1)
,所以可解得2
2
,c=2,所以b2=a2-c2=4,
所以椭圆的标准方程为
x2
8
+
y2
4
=1

所以椭圆的焦点坐标为(±2,0),
因为双曲线为等轴双曲线,且顶点是该椭圆的焦点,
所以该双曲线的标准方程为
x2
4
-
y2
4
=1

(2)设点P(x0,y0),直线PF1、PF2的斜率分别为k1、k2,则k1•k2=
y0
x0+2
y0
x0-2
=
y02
x02-4
=1,
假设存在常数λ,使得得|AB|+|CD|=λ|AB|•|CD|恒成立,
则设直线AB的方程为y=k(x+2),直线CD的方程为y=
1
k
(x-2),
y=k(x+2)代入椭圆方程消y得:(2k2+1)x2+8k2x+8k2-8=0,
设A(x1,y1),B(x2,y2),则由韦达定理得x1+x2=-
8k2
2k2+1
x1x2=
8k2-8
2k2+1

∴|AB|=
1+k2
(x1+x2)2-4x1x2
=
4
2
(1+k2)
2k2+1

同理可得|CD|=
4
2
(1+k2)
k2+2

∵|AB|+|CD|=λ|AB|•|CD|,
∴λ=
1
|AB|
+
1
|CD|
=
3(k2+1)
4
2
(k2+1)
=
3
2
8

∴存在常数λ=
3
2
8
,使得|AB|+|CD|=λ|AB|•|CD|恒成立.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左焦点为F,上顶点为A,过点A与AF垂直的直线分别交椭圆C与x轴正半轴于点P、Q,且
AP
=
8
5
PQ

(1)求椭圆C的离心率;
(2)若过A、Q、F三点的圆恰好与直线l:x+
3
y+3=0相切,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,N为圆C:(x+1)2+y2=16上的一动点,点D(1,0),点M是DN的中点,点P在线段CN上,且
MP
DN
=0

(Ⅰ)求动点P表示的曲线E的方程;
(Ⅱ)若曲线E与x轴的交点为A,B,当动点P与A,B不重合时,设直线PA与PB的斜率分别为k1,k2,证明:k1•k2为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知O为坐标原点,F为椭圆C:x2+
y2
2
=1
在y轴正半轴上的焦点,过F且斜率为-
2
的直线l与C交于A、B两点,点P满足
OA
+
OB
+
OP
=
0

(Ⅰ)证明:点P在C上;
(Ⅱ)设点P关于点O的对称点为Q,证明:A、P、B、Q四点在同一圆上.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆
x2
4
+
y2
2
=1
,过程P(1,1)作直线l,与椭圆交于A,B两点,且点P是线段AB的中点,则直线l的斜率为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

直线l过x轴上的点M,l交椭圆
x2
8
+
y2
4
=1
于A,B两点,O是坐标原点.
(1)若M的坐标为(2,0),当OA⊥OB时,求直线l的方程;
(2)若M的坐标为(1,0),设直线l的斜率为k(k≠0),是否存直线l,使得l垂直平分椭圆的一条弦?如果存在,求k的取值范围;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的中心在原点,焦点在x轴上,离心率e=
1
2
,一个顶点的坐标为(0,
3
)

(1)求椭圆C的方程;
(2)椭圆C的左焦点为F,右顶点为A,直线l:y=kx+m与椭圆C相交于M,N两点且
AM
AN
=0
,试问:是否存在实数λ,使得S△FMN=λS△AMN成立,若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C1
x2
4
+y2=1,椭圆C2以C1的长轴为短轴,且与C1有相同的离心率.
(1)求椭圆C2的方程;
(2)设O为坐标原点,点A,B分别在椭圆C1和C2上,
OB
=2
OA
,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆C的中心在原点,焦点在x轴上,F1,F2分别是椭圆C的左、右焦点,M是椭圆短轴的一个端点,过F1的直线l与椭圆交于A,B两点,△MF1F2的面积为4,△ABF2的周长为8
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)设点Q的坐标为(1,0),是否存在椭圆上的点P及以Q为圆心的一个圆,使得该圆与直线PF1,PF2都相切,如存在,求出P点坐标及圆的方程,如不存在,请说明理由.

查看答案和解析>>

同步练习册答案