精英家教网 > 高中数学 > 题目详情
设f(x)是定义在R上恒不为0的函数,对任意x,y∈R,都有f(x)•f(y)=f(x+y),若a1=
1
2
,an=f(n)(n为常数),则数列{an}的前n项和Sn的取值范围是(  )
A、[
1
2
,2)
B、[
1
2
,2]
C、[
1
2
,1]
D、[
1
2
,1)
分析:依题意分别求出f(2),f(3),f(4)进而发现数列{an}是以
1
2
为首项,以
1
2
的等比数列,进而可以求得Sn,进而Sn的取值范围.
解答:解析:f(2)=f2(1),f(3)=f(1)f(2)=f3(1),
f(4)=f(1)f(3)=f4(1),a1=f(1)=
1
2

∴f(n)=(
1
2
n
∴Sn=
1
2
(1-
1
2n
)
1-
1
2
=1-
1
2n
∈[
1
2
,1).
答案:D
点评:本题主要考查了等比数列的求和问题.属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

3、设f(x)是定义在R上的奇函数,且f(3)+f(-2)=2,则f(2)-f(3)=
-2

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的偶函数,当x≥0时,f(x)=2x+2x-1,则f(-1)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的奇函数,且f(1)=0,当x>0时,有f(x)>xf′(x)恒成立,则不等式xf(x)>0的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的奇函数,且y=f(x)满足f(1-x)=f(x),且f( 
1
2
 )=2
,则f(1)+f(
3
2
)+f(2)+f(
5
2
)+f(3)+f(
7
2
)
=
-2
-2

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[0,2]时,f(x)=2x-x2+a(a是常数).则x∈[2,4]时的解析式为(  )
A、f(x)=-x2+6x-8B、f(x)=x2-10x+24C、f(x)=x2-6x+8D、f(x)=x2-6x+8+a

查看答案和解析>>

同步练习册答案