精英家教网 > 高中数学 > 题目详情
20.用[x]表示不超过x的最大整数,例如[3]=3,[1.2]=1,[-1.3]=-2.已知数列{an}满足a1=1,an+1=an2+an,则[$\frac{1}{{{a_1}+1}}+\frac{1}{{{a_2}+1}}+…+\frac{1}{{{a_{2016}}+1}}$]=0.

分析 由已知结合数列递推式可得数列{an}是递增数列,且an>0,进一步得到$\frac{1}{{a}_{n}+1}=\frac{1}{{a}_{n}}-\frac{1}{{a}_{n+1}}$,可得$\frac{1}{{{a_1}+1}}+\frac{1}{{{a_2}+1}}+…+\frac{1}{{{a_{2016}}+1}}$<1,结合已知定义得答案.

解答 解:∵a1=1,an+1=an2+an>0,
∴数列{an}是递增数列,且an>0,
则由an+1=an2+an,得$\frac{1}{{a}_{n}+1}=\frac{1}{{a}_{n}}-\frac{1}{{a}_{n+1}}$,
∴$\frac{1}{{{a_1}+1}}+\frac{1}{{{a_2}+1}}+…+\frac{1}{{{a_{2016}}+1}}$
=$\frac{1}{{a}_{1}}-\frac{1}{{a}_{2}}+\frac{1}{{a}_{2}}-\frac{1}{{a}_{3}}+…+$$\frac{1}{{a}_{2016}}-\frac{1}{{a}_{2017}}$
=$\frac{1}{{a}_{1}}-\frac{1}{{a}_{2017}}<\frac{1}{{a}_{1}}=1$,
又$\frac{1}{{a}_{1}+1}+\frac{1}{{a}_{2}+1}+…+\frac{1}{{a}_{2016}+1}>0$,
∴[$\frac{1}{{{a_1}+1}}+\frac{1}{{{a_2}+1}}+…+\frac{1}{{{a_{2016}}+1}}$]=0.
故答案为:0.

点评 本题考查数列递推式,关键是由数列递推式得到$\frac{1}{{a}_{n}+1}=\frac{1}{{a}_{n}}-\frac{1}{{a}_{n+1}}$,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.ρ=4sinθ所对应的直角坐标方程为x2+y2=4y.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知全集U={1,2,3,4,5},集合A={1,2,4},集合B={1,5},则A∩(∁UB)等于(  )
A.{2,4}B.{1,2,4}C.{2,3,4,5}D.{1,2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.[重点中学做]如图所示,以Ox为始边作角α与β(0<β<α<π),它们的终边分别与单位圆相交于点P、Q,已知点P的横坐标为-$\frac{4}{5}$.
(1)求$\frac{sin2α+cos2α}{1+co{s}^{2}a}$的值;
(2)若$\overrightarrow{OP}$•$\overrightarrow{OQ}$=$\frac{\sqrt{3}}{3}$,求sinβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知数列:$\frac{1}{1}$,$\frac{2}{1}$,$\frac{1}{2}$,$\frac{3}{1}$,$\frac{2}{2}$,$\frac{1}{3}$,$\frac{4}{1}$,$\frac{3}{2}$,$\frac{2}{3}$,$\frac{1}{4}$,…,依它的前10项的规律,这个数列的第2016项
a2016=(  )
A.$\frac{1}{63}$B.$\frac{1}{31}$C.$\frac{3}{61}$D.$\frac{1}{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.为绘制海底地貌图,测量海底两点C,D之间的距离,海底探测仪沿水平方向在A,B两点进行测量,A,B,C,D在同一个铅垂平面内,海底探测仪测得∠BAC=30°,∠DAC=45°,∠ABD=45°,∠DBC=75°,A,B两点的距离为$\sqrt{3}$海里,则C,D之间的距离为(  )
A.$\sqrt{5}$海里B.2海里C.$\frac{\sqrt{6}+\sqrt{2}}{2}$海里D.$\sqrt{2}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=-$\frac{1}{2}$x2+lnx的极值点是(  )
A.x=-1B.x=-$\frac{1}{2}$C.x=1D.x=$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知在等差数列{an}中,a4=7,a2+a7=16.
(1)求数列{an}的通项公式;
(2)设bn=${2}^{{a}_{n}}$+n,求数列{bn}的前n项和Tn的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}是一个等差数列
(1)a1=1,a4=7,求通项公式an及前n项和Sn
(2)设S7=14,求a3+a5

查看答案和解析>>

同步练习册答案