ÒÑÖª¸÷Ïî¾ùΪÕýÊýµÄÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬ÊýÁÐ{an2}µÄÇ°nÏîºÍΪTn£¬Âú×ãa1=1£¬Tn=
4
3
-
1
3
(p-Sn)2
£¬ÆäÖÐpΪ³£Êý£®
£¨1£©ÇópµÄÖµ¼°ÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©¢ÙÊÇ·ñ´æÔÚÕýÕûÊýn£¬m£¬k£¨n£¼m£¼k£©£¬Ê¹µÃan£¬am£¬ak³ÉµÈ²îÊýÁУ¿Èô´æÔÚ£¬Ö¸³ön£¬m£¬kµÄ¹Øϵ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
¢ÚÈô¶ÔÓÚÈÎÒâµÄÕýÕûÊýn£¬¶¼ÓÐan£¬2xan+1£¬2yan+2³ÉµÈ²îÊýÁУ¬Çó³öʵÊýx£¬yµÄÖµ£®
·ÖÎö£º£¨1£©Áîn=1£¬´úÈëTn£¬Çó³öpµÄ¿ÉÄÜÈ¡Öµ£¬¾­¹ýÑéÖ¤£¬È·¶¨×îÖÕµÄÖµ2£®ÀûÓÃanÓëSn£¬an2ÓëTnµÄ¹Øϵ£¬×ª»¯£¬Ñ°Çó{an}µÄÐÔÖÊ£¬¸ù¾ÝÐÔÖÊÇóͨÏ
£¨2£©¢Ù¼ÙÉè´æÔÚn£¬m£¬k£¨n£¼m£¼k£©£¬Áгö¹Øϵʽ£¬Ì½ÌÖÓÐÎÞ½â»ò¹Øϵ¢Úת»»³Éºã³ÉÁ¢ÎÊÌ⣬עÒâa0=1£¨a¡Ù0£©µÄʹÓã®
½â´ð£º½â£º£¨1£©µ±n=1ʱ£¬Tn=
4
3
-
1
3
(p-S1)2
£¬¼´1=
4
3
-
1
3
(p-1)2
£¬¡àp=0»òp=2
µ±p=0ʱ£¬Tn=
4
3
-
1
3
S12
£®½«n=2´úÈ룬µÃ1+a22=
4
3
-
1
3
(1+a2)2
£®
¡àa2=0£¬»ò¡àa2=-
1
2
Óëan£¾0ì¶Ü£®¡àp¡Ù0
µ±p=2ʱ£¬Tn=
4
3
-
1
3
(2-Sn)2
   ¢Ù
½«n=2´úÈ룬µÃ1+a22=
4
3
-
1
3
(1-a2)2
¡àa2=
1
2
£¬a2=
1
2
a1
ÓÉ¢ÙµÃTn+1=
4
3
-
1
3
(2-Sn+1)2
    ¢Ú
¢Ú-¢ÙµÃan+12=
1
3
(4-Sn+1-Sn) (Sn+1-Sn)

¼´3an+12=£¨4-Sn+1-Sn£©an+1
  Ôò3an+1=4-Sn+1-Sn    ¢Û
  Ôò 3an+2=4-Sn+2-Sn+1     ¢Ü
¢Ü-¢Û£¬µÃ3an+2-3an+1=-an+2-an+1
an+2=
1
2
an+1£¬ÓÖa2=
1
2
a1
¡à{an}ÊǵȱÈÊýÁУ¬Í¨Ïʽan=(
1
2
)
n-1
£®
£¨2£©¢Ù¼ÙÉè´æÔÚÕýÕûÊýn£¬m£¬k£¨n£¼m£¼k£©£¬Ê¹µÃan£¬am£¬ak³ÉµÈ²îÊýÁУ¬Ôò
 2am=an+ak£¬¼´2¡Á(
1
2
)
m-1
=(
1
2
)
n-1
+(
1
2
)
k-1

Á½±ßͬ³ýÒÔ(
1
2
)
m-1
µÃ£º2=(
1
2
)
n-m
+(
1
2
)
k-m
  ¢Ý
ÓÉÒÑÖªn-m¡Ü-1£¬¡à(
1
2
)
n-m
¡Ý2£¬ÇÒ(
1
2
)
k-m
£¾0
¡à¢Ýʽ²»³ÉÁ¢£®´Ó¶ø²»´æÔÚÂú×ãÌõ¼þµÄn£¬m£¬k£®
      ¢ÚÈô¶ÔÓÚÈÎÒâµÄÕýÕûÊýn£¬¶¼ÓÐan£¬2xan+1£¬2yan+2³ÉµÈ²îÊýÁÐ
  Ôò2x+1an+1=an+2yan+2£¬¸ù¾ÝͨÏʽ£¬µÃ2x-n+1=21-n+2y-n-1£¬
Á½±ßͬ³ýÒÔ21-n£¬µÃ2x=1+2y-2£¬¡àx=1£¬y=2£®
µãÆÀ£º±¾Ì⿼²éµÈ±ÈÊýÁеĶ¨Ò壬ÐÔÖÊ£¬Í¨ÏʽÇó½â£¬¿¼²éת»¯ÄÜÁ¦£¬·ÖÎö½â¾öÎÊÌâÄÜÁ¦£¬¼ÆËãÄÜÁ¦£¬·´Ö¤·¨µÄÔËÓÃÄÜÁ¦£®ÊÇÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¸÷Ïî¾ùΪÕýÊýµÄÊýÁÐ{an}Âú×ãan+12=2an2+anan+1£¬a2+a4=2a3+4£¬ÆäÖÐn¡ÊN*£®
£¨¢ñ£©ÇóÊý{an}µÄͨÏʽ£»
£¨¢ò£©ÉèÊý{bn}µÄÇ°nÏîºÍTn£¬Áîbn=an2£¬ÆäÖÐn¡ÊN*£¬ÊԱȽÏ
Tn+1+12
4Tn
Óë
2log2bn+1+2
2log2bn-1
µÄ´óС£¬²¢¼ÓÒÔÖ¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

ÒÑÖª¸÷Ïî¾ùΪÕýÊýµÄÊýÁÐ{an}Âú×ãan+12=2an2+anan+1£¬a2+a4=2a3+4£¬ÆäÖÐn¡ÊN*£®
£¨¢ñ£©ÇóÊý{an}µÄͨÏʽ£»
£¨¢ò£©ÉèÊý{bn}µÄÇ°nÏîºÍTn£¬Áîbn=an2£¬ÆäÖÐn¡ÊN*£¬ÊԱȽÏÊýѧ¹«Ê½ÓëÊýѧ¹«Ê½µÄ´óС£¬²¢¼ÓÒÔÖ¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£ºÇൺ¶þÄ£ ÌâÐÍ£º½â´ðÌâ

ÒÑÖª¸÷Ïî¾ùΪÕýÊýµÄÊýÁÐ{an}Âú×ãan+12=2an2+anan+1£¬a2+a4=2a3+4£¬ÆäÖÐn¡ÊN*£®
£¨¢ñ£©ÇóÊý{an}µÄͨÏʽ£»
£¨¢ò£©ÉèÊý{bn}µÄÇ°nÏîºÍTn£¬Áîbn=an2£¬ÆäÖÐn¡ÊN*£¬ÊԱȽÏ
Tn+1+12
4Tn
Óë
2log2bn+1+2
2log2bn-1
µÄ´óС£¬²¢¼ÓÒÔÖ¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º¡¶µÚ2Õ ÊýÁС·¡¢¡¶µÚ3Õ ²»µÈʽ¡·2010Äêµ¥Ôª²âÊÔ¾í£¨³Â¾­ÂÚÖÐѧ£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÒÑÖª¸÷Ïî¾ùΪÕýÊýµÄÊýÁÐ{an}Âú×ãan+12=2an2+anan+1£¬a2+a4=2a3+4£¬ÆäÖÐn¡ÊN*£®
£¨¢ñ£©ÇóÊý{an}µÄͨÏʽ£»
£¨¢ò£©ÉèÊý{bn}µÄÇ°nÏîºÍTn£¬Áîbn=an2£¬ÆäÖÐn¡ÊN*£¬ÊԱȽÏÓëµÄ´óС£¬²¢¼ÓÒÔÖ¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2012Äê¸ß¿¼¸´Ï°·½°¸ÅäÌ׿αê°æÔ¿¼ÊýѧÊÔ¾í£¨¶þ£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÒÑÖª¸÷Ïî¾ùΪÕýÊýµÄÊýÁÐ{an}Âú×ãan+12=2an2+anan+1£¬a2+a4=2a3+4£¬ÆäÖÐn¡ÊN*£®
£¨¢ñ£©ÇóÊý{an}µÄͨÏʽ£»
£¨¢ò£©ÉèÊý{bn}µÄÇ°nÏîºÍTn£¬Áîbn=an2£¬ÆäÖÐn¡ÊN*£¬ÊԱȽÏÓëµÄ´óС£¬²¢¼ÓÒÔÖ¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸