精英家教网 > 高中数学 > 题目详情

【题目】已知函数,().

(1)若函数的图象在上有两个不同的交点,求实数的取值范围;

(2)若在上不等式恒成立,求实数的取值范围;

(3)证明:对于时,任意,不等式恒成立.

【答案】(1);(2);(3)见解析.

【解析】【试题分析】(1)依据题设将问题进行转化,再运用导数知识求解;(2)先将不等式进行等价转化,再构造函数借助导数工具分析求解;(3)先构造函数,再依据题设与问题(2)的结论进行分析推证。

(1)设函数

时,为单调减函数,不成立

时,

所以函数有唯一的极小值,需要

又因为

所以有两个零点,有两个交点,

所以

(2)设函数,且

①当时,有,不成立,

②当时,(i)时,,当时,

所以上是单调增函数,所以

(ii)时,设

所以存在,使得

,∴不成立

综上所述

(3)不等式变形为

设函数,由第(2)问可知当时函数为单调函数,所以原不等式成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】口袋中装有2个白球和nn≥2,nN*)个红球.每次从袋中摸出2个球(每次摸球后把这2个球放回口袋中),若摸出的2个球颜色相同则为中奖,否则为不中奖.

(I)用含n的代数式表示1次摸球中奖的概率;

(Ⅱ)若n=3,求3次摸球中恰有1次中奖的概率;

(III)记3次摸球中恰有1次中奖的概率为fp),当fp)取得最大值时,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着移动互联网时代的到来,手机的使用非常普遍,低头族随处可见。某校为了解家长和教师对学生带手机进校园的态度,随机调查了100位家长和教师,得到情况如下表:

教师

家长

反对

40

20

支持

20

20

1)是否有95%以上的把握认为带手机进校园与身份有关,并说明理由;

2)把以上频率当概率,随机抽取3位教师,记其中反对学生带手机进校园的人数为X,求随机变量X的分布列和数学期望.

附:

PK2≥k0

0.050

0.010

0.001

k0

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某校高三学生的视力情况,随机地抽查了该校1000名高三学生的视力情况,得到频率分布直方图,如图,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为,视力在4.6到5.0之间的学生数 的值分别为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区发生里氏8.0级特大地震.地震专家对发生的余震进行了监测,记录的部分数据如下表:

强度(J)

1.6×1019

3.2×1019

4.5×1019

6.4×1019

震级(里氏)

5.0

5.2

5.3

5.4

注:地震强度是指地震时释放的能量.

地震强度(x)和震级(y)的模拟函数关系可以选用y=alg x+b(其中a,b为常数).利用散点图(如图)可知a的值等于________.(取lg 2=0.3进行计算)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(I)求的单调区间;

(II)若对任意的,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方形ABCDA1B1C1D1中,EFM分别是棱B1C1BB1C1D1的中点,是否存在过点EM且与平面A1FC平行的平面?若存在,请作出并证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了在十一黄金周期间降价搞促销,某超市对顾客实行购物优惠活动,规定一次购物付款总额:(1)如果不超过200元,则不予优惠;(2)如果超过200元,但不超过500元,则按标价给予9折优惠;(3)如果超过500元,其中500元按第(2)条给予优惠,超过500元的部分给予7折优惠。小张两次去购物,分别付款168元和423元,假设她一次性购买上述同样的商品,则应付款额为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,设ABC的顶点分别为,圆M是ABC的外接圆,直线的方程是

(1)求圆M的方程;

(2)证明:直线与圆M相交;

(3)若直线被圆M截得的弦长为3,求直线的方程

查看答案和解析>>

同步练习册答案