精英家教网 > 高中数学 > 题目详情

【题目】某小区打算将如图的一直三角形区域进行改建,在三边上各选一点连成等边三角形,在其内建造文化景观.已知,,则区域内面积(单位:)的最小值为( )

A. B. C. D.

【答案】D

【解析】

由题,ABC是直三角形,DEF是等边三角形,可得CBA,∠B;设∠CEDθDEx,那么∠BFE+θ;则CExcosθ,在三角形△BFE中利用正弦定理求解x的最小值,即可求解△DEF区域内面积的最小值.

ABC是直三角形,AB20mAC10m,可得CB

DEF是等边三角形,设∠CEDθDEx,那么∠BFE+θ;则CExcosθ

BFE中由正弦定理,可得

可得x,其中tanα

x

则△DEF面积S

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知是定点,.若动点满足,则动点的轨迹是(

A.直线B.线段C.D.椭圆

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某些竞赛活动中,选手的最终成绩是将前面所有轮次比赛成绩求算术平均获得的.同学们知道这样一个事实:在所有轮次的成绩中,如果由高到低依次去掉一些高分,那么平均分降低;反之,如果由低到高依次去掉一些低分,那么平均分提高. 这两个事实可以用数学语言描述为:若有限数列满足,且不全相等,则(1)_______;(2)_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若,求实数取值的集合;

(Ⅱ)当时,对任意,令,证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点为,点上.

(1)求椭圆的方程;

(2)若直线与椭圆相交于两点,问轴上是否存在点,使得是以为直角顶点的等腰直角三角形?若存在,求点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为(为参数,倾斜角),曲线C的参数方程为(为参数,),以坐标原点为极点,轴正半轴为极轴建立极坐标系。

(1)写出曲线的普通方程和直线的极坐标方程;

(2)若直线与曲线恰有一个公共点,求点的极坐标。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是两条不同的直线,是三个不同的平面.有下列四个命题:

①若,则

②若,则

③若,则

④若,则

其中正确命题的序号是(

A.①③B.①④C.②③④D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,四边形是边长为8的菱形,是等边三角形,二面角的余弦值为.

(Ⅰ)求证:

(Ⅱ)求直线与平面夹角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(Ⅰ)当曲线在点处的切线与直线垂直时,求的值;

(Ⅱ)若函数有两个零点,求实数的取值范围.

查看答案和解析>>

同步练习册答案