【题目】已知函数f(x)=cos(+x)cos(-x),g(x)=sin 2x-.
(1)求函数f(x)的最小正周期;
(2)求函数h(x)=f(x)-g(x)的最大值,并求使h(x)取得最大值的x的集合.
【答案】(1)π;(2)h(x)取得最大值,对应的x的集合为{x|x=kπ-,k∈Z}.
【解析】试题分析:(1)利用两角和与差的余弦公式及二倍角公式,化简得f(x)=cos 2x-,,结合三角函数的周期公式即可算出函数f(x)的最小正周期;
(2)根据(1)中化简的结果,得h(x)=cos,再由三角函数的图象与性质吗,即可得到使得h(x)取得最大值的x的集合.
试题解析:
(1)f(x)=coscos
=
=cos2x-sin2x=-=cos 2x-,
所以f(x)的最小正周期为=π.
(2)h(x)=f(x)-g(x)=cos 2x-sin 2x=cos,
当2x+=2kπ,即x=-+kπ(k∈Z)时,h(x)取得最大值.
所以h(x)取得最大值时,对应的x的集合为{x|x=kπ-,k∈Z}.
科目:高中数学 来源: 题型:
【题目】汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确的是( )
A.消耗1升汽油,乙车最多可行驶5千米
B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多
C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油
D.某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在经济学中,函数f(x)的边际函数为Mf(x),定义为Mf(x)=f(x+1)﹣f(x).已知某服装公司每天最多
生产100件.生产x件的收入函数为R(x)=300x﹣2x2(单位元),其成本函数为C(x)=50x+300(单位:元),利润等于收入与成本之差.
(1)求出利润函数p(x)及其边际利润函数Mp(x);
(2)分别求利润函数p(x)及其边际利润函数Mp(x)的最大值;
(3)你认为本题中边际利润函数Mp(x)最大值的实际意义是什么?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若抛物线y2=2px(p>0)上一点到焦点和抛物线对称轴的距离分别为10和6,则抛物线方程为( )
A.y2=4x
B.y2=36x
C.y2=4x或y2=36x
D.y2=8x或y2=32x
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)求函数的定义域;
(2)判断函数的奇偶性,并证明你的结论;
(3)在函数图像上是否存在两个不同的点,使直线垂直轴,若存在,求出两点坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆的方程为: 。
(1)求圆的圆心所在直线方程一般式;
(2)若直线被圆截得弦长为,试求实数的值;
(3)已知定点,且点是圆上两动点,当可取得最大值为时,求满足条件的实数的值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是他的研究成果之一,指的是:已知动点M与两定点A、B的距离之比为λ(λ>0,λ≠1),那么点M的轨迹就是阿波罗尼斯圆.下面,我们来研究与此相关的一个问题.已知圆:x2+y2=1和点 ,点B(1,1),M为圆O上动点,则2|MA|+|MB|的最小值为( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com