精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=ax2-lnx+6.
(1)若函数f(x)的极值点为x=$\frac{\sqrt{2}}{2}$,求函数f(x)在点(1,f(1))处的切线方程;
(2)当x∈(0,+∞)时,若关于x的不等式f(x)+lnx<x-ln(x+1)+6恒成立,求实数a的取值范围.

分析 (1)先求导,根据f′($\frac{\sqrt{2}}{2}$)=0,求出a的值,再根据导数的几何意义即可求出切线方程,
(2)原不等式转化为ax2<x-ln(x+1),构造函数g(x)=x-ln(x+1),利用导数求出g(x)最小值,继而转化为ax2<0,在x∈((0,+∞)恒成立,求出a的取值范围即可.

解答 解:(1)f(x)=ax2-lnx+6,x>0,
∴f′(x)=2ax-$\frac{1}{x}$,
∵f(x)的极值点为x=$\frac{\sqrt{2}}{2}$,
∴f′($\frac{\sqrt{2}}{2}$)=2a•$\frac{\sqrt{2}}{2}$-$\sqrt{2}$=0,解得a=1,
∴f′(x)=2x-$\frac{1}{x}$,
∴k=f′(1)=2-1=1,f(1)=1-0+6=7,
∴函数f(x)在点(1,f(1))处的切线方程y-7=x-1,即x-y+6=0,
(2)当x∈(0,+∞)时,若关于x的不等式f(x)+lnx<x-ln(x+1)+6恒成立,
∵ax2-lnx+6+lnx<x-ln(x+1)+6在x∈(0,+∞)恒成立,
∴ax2<x-ln(x+1),
设g(x)=x-ln(x+1),
∴g′(x)=1-$\frac{1}{x+1}$>0恒成立,
∴g(x)在x∈(0,+∞)为增函数,
∴g(x)>g(0)=0,
∴ax2<0,在x∈(0,+∞)恒成立,
∴a≤0,
实数a的取值范围为(-∞,0].

点评 本题考查了导数的几何意义和参数的取值范围,关键是转化,构造,求最值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知△ABC三点A(-3,4),B(1,2),C(5,-2).求该三角形三条中线所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x2+4x+2,g(x)=2ex(x+1),若x≥-2时,f(x)≤kg(x),求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知命题p:关于x的方程log2(ax2-2x+2)=2在[1,2]内有解;命题q:函数f(x)=m(x2-1)+x-a的图象与x轴有交点.
(1)若p是真命题.求实数a的取值范围;
(2)若¬p是¬q的必要不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设一直线上三点A,B,P满足$\overrightarrow{AP}$=m$\overrightarrow{PB}$(m≠-1),O是直线所在平面内一点,则$\overrightarrow{OP}$用$\overrightarrow{OA}$,$\overrightarrow{OB}$表示为$\frac{1}{m+1}$$\overrightarrow{OA}$+$\frac{m}{m+1}$$\overrightarrow{OB}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设集合A={x|x=2t2+4t+1},B={y|y=-3x2+6x+10},则A∩B=[-1,13].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=x3+bx2+cx+d的图象如图所示,则函数y=log${\;}_{\frac{1}{2}}$(x2+$\frac{2}{3}$bx+$\frac{c}{3}$)的单调减区间为(  )
A.($\frac{1}{2}$,+∞)B.(3,+∞)C.(-∞,-$\frac{1}{2}$)D.(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若不等式x+lnx≤kx+b≤x2对?x∈(0,+∞)恒成立,则k+3b的值-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,P是正方形ABCD所在平面外一点,PA⊥平面ABCD,AE⊥PD,PA=3AB.求直线AC与平面ABE所成角的正弦值.

查看答案和解析>>

同步练习册答案