精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=e|x|+|x|-k有两个零点,则实数k的取值范围是(  )
A.(0,1)B.(1,+∞)C.(-1,0)D.(-∞,-1)

分析 由题意,k=e|x|+|x|,有两个交点,k=ex+x(x>0),有1个交点,构造g(x)=ex+x(x>0),可得g(x)>g(0)=1,即可得出结论.

解答 解:由题意,k=e|x|+|x|,有两个交点,
∴k=ex+x(x>0),有1个交点,
令g(x)=ex+x(x>0),则g′(x)=ex+1>0,
∴g(x)>g(0)=1,
∴k>1,
故选:B.

点评 本题主要考查函数的零点,考查学生分析解决问题的能力,正确转化是关键..

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=-$\frac{1}{2}$lnx+$\frac{2}{x+1}$.
(1)求证:函数f(x)有且只有一个零点;
(2)对任意实数x∈[$\frac{1}{e}$,1](e为自然对数的底数),使得对任意t∈[$\frac{1}{2}$,2]恒有f(x)≥t3-t2-2at+2成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x2+ax+2,
(1)若对于任意的实数x都有f(1+x)=f(1-x)成立.通过计算,求实数a的值;
(2)若a=-1,问x取何值时,使得f(log2x)>f(1),且log2f(x)<f(1)成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设函数f(x)的定义域为(0,6),g(x)的定义域为[2,7],若f(x)>g(x)的解集是(3,5),则f(x)≤g(x)的解集是[2,3]∪[5,6).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设点P(x0,y0)是圆x2+y2=10上的任意一点,若直线x0x+y0y=a与此圆恒有交点,则实数a的取值范围是-10≤a≤10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=2-x(4x-m)是奇函数,g(x)=lg(10x+1)+nx是偶函数.
(I)求m+n的值;
(Ⅱ)设h(x)=$\left\{\begin{array}{l}{f(x)+1,x≤0}\\{g(x)+\frac{1}{2}x,x>0}\end{array}\right.$,试求h(x)在x∈[-2,1]时的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.光线从点M(-3,3)射到点P(1,0),然后被x轴反射,判断反射光线是否经过点Q(3,$\frac{3}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,正方体ABCD=A1B1C1D1,棱长为a,E、F分别为AB、BC上的点,且AE=BF=x.
(1)当三棱椎B1-BEF的体积最大时,求二面角B1-EF-B的正切值;
(2)求异面直线A1E与B1F所成的角的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:3x2+4y2=12和点Q(4,0),直线l过点Q且与椭圆C交于A、B两点(可以重合).
(Ⅰ)若∠AOB为钝角(O为原点),试确定直线l的斜率的取值范围;
(Ⅱ)设点A关于长轴的对称点为A1,F为椭圆的右焦点,试判断A1和F,B三点是否共线,并说明理由.

查看答案和解析>>

同步练习册答案