【题目】已知定义在R上的函数f(x)对任意实数x、y恒有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,又f(1)=-.
(1)求证:f(x)为奇函数;
(2)求证:f(x)在R上是减函数;
(3)求f(x)在[-3,6]上的最大值与最小值.
【答案】(1)详见解析 (2)详见解析 (3)最大值为2,最小值为-4
【解析】
(1)证明:令x=y=0,可得f(0)+f(0)=f(0+0),从而f(0)=0.令y=-x,可得f(x)+f(-x)=f(x-x)=0,即f(-x)=-f(x),故f(x)为奇函数.
(2)证明:设x1、x2∈R,且x1>x2,则x1-x2>0,于是f(x1-x2)<0.从而f(x1)-f(x2)=f[(x1-x2)+x2]-f(x2)=f(x1-x2)+f(x2)-f(x2)=f(x1-x2)<0.所以f(x)为减函数.
(3)解:由(2)知,所求函数的最大值为f(-3),最小值为f(6).f(-3)=-f(3)=-[f(2)+f(1)]=-2f(1)-f(1)=-3f(1)=2,f(6)=-f(-6)=-[f(-3)+f(-3)]=-4.于是f(x)在[-3,6]上的最大值为2,最小值为-4
科目:高中数学 来源: 题型:
【题目】如图,已知在四棱锥中,平面,点在棱上,且,底面为直角梯形, 分别是的中点.
(1)求证://平面;
(2)求直线与平面所成角的正弦值;
(3)求点到平面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某蛋糕店制作并销售一款蛋糕,当天每售出个利润为元,未售出的每个亏损元.根据以往天的统计资料,得到如下需求量表,元旦这天,此蛋糕店制作了个这种蛋糕.以(单位:个, )表示这天的市场需求量. (单位:元)表示这天售出该蛋糕的利润.
需求量/个 | |||||
天数 | 10 | 20 | 30 | 25 | 15 |
(1)将表示为的函数,根据上表,求利润不少于元的概率;
(3)元旦这天,该店通过微信展示打分的方式随机抽取了名市民进行问卷调查,调查结果如下表所示,已知在购买意愿强的市民中,女性的占比为.
购买意愿强 | 购买意愿弱 | 合计 | |
女性 | 28 | ||
男性 | 22 | ||
合计 | 28 | 22 | 50 |
完善上表,并根据上表,判断是否有的把握认为市民是否购买这种蛋糕与性别有关?
附: .
0.05 | 0.025 | 0.010 | 0.005 | |
3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区对一种新品种小麦在一块试验田进行试种.从试验田中抽取株小麦,测量这些小麦的生长指标值,由测量结果得如下频数分布表:
生长指标值分组 | |||||||
频数 |
(1)在相应位置上作出这些数据的频率分布直方图;
(2)求这株小麦生长指标值的样本平均数和样本方差(同一组中的数据用该组区间的中点值作代表);
(3)由直方图可以认为,这种小麦的生长指标值服从正态分布,其中近似为样本平均数, 近似为样本方差.
①利用该正态分布,求;
②若从试验田中抽取株小麦,记表示这株小麦中生长指标值位于区间的小麦株数,利用①的结果,求.
附: .
若,则,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市2011年至2017年新开楼盘的平均销售价格(单位:千元/平方米)的统计数据如下表:
年份 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份代号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
销售价格 | 3 | 3.4 | 3.7 | 4.5 | 4.9 | 5.3 | 6 |
(1)求关于x的线性回归方程;
(2)利用(1)中的回归方程,分析2011年至2017年该市新开楼盘平均销售价格的变化情况,并预测该市2019年新开楼盘的平均销售价格。
附:参考公式: ,,其中为样本平均值。
参考数据: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P-ABCD的底面为直角梯形,AD∥BC,AD=2BC=2,BC⊥DC,∠BAD=60°,平面PAD⊥底面ABCD,E为AD的中点,△PAD为正三角形,M是棱PC上的一点(异于端点).
(1)若M为PC的中点,求证:PA∥平面BME;
(2)是否存在点M,使二面角MBED的大小为30°.若存在,求出点M的位置;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f (x)=ln x+x2-ax(a为常数).
(1)若x=1是函数f (x)的一个极值点,求a的值;
(2)当0<a≤2时,试判断f (x)的单调性;
(3)若对任意的a∈(1,2),x0∈[1,2],不等式f (x0)>mln a 恒成立,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com