分析 (1)令x=2,y=1,并代入f(xy)=f(x)+f(y),即可求出f(1)的值;
(2)令x=2,y=2,代入求得f(4),结合题意可将f(3)+f(4-8x)≥2转化为f(12-24x)≥f(4),结合函数的单调性与函数的定义域
解答 解:(1)在f(xy)=f(x)+f(y)中,令x=2,y=1,则f(2×1)=f(2)+f(1),
又由f(2)=1,则f(1)=0;
(2)令x=2,y=2,则f(2×2)=f(4)=f(2)+f(2)=2,
所以f(3)+f(4-8x)=f(12-24x)≥f(4),
又f(x)为增函数,∴$\left\{\begin{array}{l}{4-8x>0}\\{12-24x≥4}\end{array}\right.$解得:x$≤\frac{1}{3}$,
点评 本题考查了抽象函数的应用,解(2)的关键是根据题意,分析出f(4)=2,进而用f(4)替换2,要注意函数的定义域,属于基础题.
科目:高中数学 来源: 题型:选择题
A. | 2 | B. | 2或$\sqrt{2}$ | C. | $\sqrt{2}$ | D. | 3$\sqrt{2}$或2$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [$\frac{8}{{e}^{2}}$,+∞) | B. | (0,$\frac{8}{{e}^{2}}$] | C. | [$\frac{4}{{e}^{2}}$,+∞) | D. | (0,$\frac{4}{{e}^{2}}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -2 011 | B. | -2 012 | C. | -2 010 | D. | -2 013 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com