精英家教网 > 高中数学 > 题目详情

【题目】王久良导演的纪录片《垃圾围城》真实地反映了城市垃圾污染问题,目前中国668个城市中有超过的城市处于垃圾的包围之中,且城市垃圾中的快递行业产生的包装垃圾正在逐年攀升,有关数据显示,某城市从2016年到2019年产生的包装垃圾量如下表:

年份x

2016

2017

2018

2019

包装垃圾y(万吨)

4

6

9

13.5

1)有下列函数模型:①;②;③.试从以上函数模型中,选择模型________(填模型序号),近似反映该城市近几年包装垃圾生产量y(万吨)与年份x的函数关系,并直接写出所选函数模型解析式;

2)若不加以控制,任由包装垃圾如此增长下去,从哪年开始,该城市的包装垃圾将超过40万吨?(参考数据:

【答案】1)①,;(22022

【解析】

1)由题意可得函数单调递增,且增长速度越来越快,则选模型①,再结合题设数据求解即可;

2)由题意有,再两边同时取对数求解即可.

解:(1)依题意,函数单调递增,且增长速度越来越快,故模型①符合,

,将代入得

;解得.

故函数模型解析式为:.

经检验,也符合.

综上:

2)令,解得,两边同时取对数得:

.

综上:从2022年开始,该城市的包装垃圾将超过40万吨.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我国古代数学典籍《九章算术》第七章“盈不足”中有一道两鼠穿墙问题:“今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠日一尺,大鼠日自倍,小鼠日自半,问何日相逢,各穿几何”,翻译过来就是:有五尺厚的墙,两只老鼠从墙的两边相对分别打洞穿墙,大、小鼠第一天都进一尺,以后每天,大鼠加倍,小鼠减半,则几天后两鼠相遇,这个问题体现了古代对数列问题的研究,现将墙的厚度改为1200尺,则需要几天时间才能打穿(结果取整数)(

A.12B.11C.10D.9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)若存在,使得,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,直线为平面上的动点,过点作直线的垂线,垂足为,且满足

(1)求动点的轨迹的方程;

(2)过点作直线与轨迹交于两点,为直线上一点,且满足,若的面积为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】规定:在桌面上,用母球击打目标球,使目标球运动,球的位置是指球心的位置我们说球 A 是指该球的球心点 A.两球碰撞后,目标球在两球的球心所确定的直线上运动,目标球的运动方向是指目标球被母球击打时,母球球心所指向目标球球心的方向.所有的球都简化为平面上半径为 1 的圆,且母球与目标球有公共点时,目标球就开始运动,在桌面上建立平面直角坐标系,解决下列问题:

(1) 如图,设母球 A 的位置为 (0, 0),目标球 B 的位置为 (4, 0),要使目标球 B C(8, -4) 处运动,求母球 A 球心运动的直线方程;

(2)如图,若母球 A 的位置为 (0, -2),目标球 B 的位置为 (4, 0),能否让母球 A 击打目标 B 球后,使目标 B 球向 (8,-4) 处运动?

(3) A 的位置为 (0,a) 时,使得母球 A 击打目标球 B 时,目标球 B(4, 0) 运动方向可以碰到目标球 C(7,-5),求 a 的最小值(只需要写出结果即可)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(Ⅰ)若有相同的单调区间,求的取值范围;

(Ⅱ)令),若在定义域内有两个不同的极值点.

(i)求的取值范围;

(ii)设两个极值点分别为 ,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班要从5名男生3名女生中选出5人担任5门不同学科的课代表,请分别求出满足下列条件的方法种数.

(1)所安排的女生人数必须少于男生人数;

(2)其中的男生甲必须是课代表,但又不能担任数学课代表;

(3)女生乙必须担任语文课代表,且男生甲必须担任课代表,但又不能担任数学课代表.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某品牌经销商在一广场随机采访男性和女性用户各50名,其中每天玩微信超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如下:

微信控

非微信控

合计

男性

26

24

50

女性

30

20

50

合计

56

44

100

(1)根据以上数据,能否有95%的把握认为“微信控”与“性别”有关?

(2)现从调查的女性用户中按分层抽样的方法选出5人,求所抽取的5人中“微信控”和“非微信控”的人数;

(3)从(2)中抽取的5位女性中,再随机抽取3人赠送礼品,试求抽取3人中恰有2人是“微信控”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在一个周期内的简图如图所示,则函数的解析式为___________,方程的实根个数为__________.

查看答案和解析>>

同步练习册答案