精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的右焦点为,且点在椭圆上.

1)求椭圆的标准方程;

2)当点在椭圆的图像上运动时,点在曲线上运动,求曲线的轨迹方程,并指出该曲线是什么图形;

3)过椭圆上异于其顶点的任意一点作曲线的两条切线,切点分别为不在坐标轴上),若直线轴,轴上的截距分别为试问:是否为定值?若是,求出该定值;若不是,请说明理由.

【答案】1 2,曲线的图形是一个以坐标原点为圆心、为半径的圆 3)是定值,

【解析】

1)由,再把点坐标代入又得一方程,联立后可解得得椭圆方程;

2)设,用表示,把代入椭圆方程可得曲线方程,由方程可判断曲线形状;

3)由(1)知,设点,由坐标可得切线方程,代入点坐标于两切线方程后观察结论可得直线方程,求出,计算,利用在椭圆上可得.

1)由题意得,所以

又点在椭圆上,所以解得

所以椭圆的标准方程为

2)设,则,于是

由于点在椭圆的图像上,

所以

整理得

所以曲线的轨迹方程为

曲线的图形是一个以坐标原点为圆心,为半径的圆.

3)由(1)知,设点

则直线的方程为

直线的方程为

把点的坐标代入①②得

所以直线的方程为

所以又点在椭圆上,

所以为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某沿海城市的海边有两条相互垂直的直线型公路l1、l2,海岸边界MPN近似地看成一条曲线段.为开发旅游资源,需修建一条连接两条公路的直线型观光大道AB,且直线AB与曲线MPN有且仅有一个公共点P(即直线与曲线相切),如图所示.若曲线段MPN是函数图象的一段,点M到l1、l2的距离分别为8千米和1千米,点N到l2的距离为10千米,以l1、l2分别为x、y轴建立如图所示的平面直角坐标系xOy,设点P的横坐标为p.

(1)求曲线段MPN的函数关系式,并指出其定义域;

(2)若某人从点O沿公路至点P观景,要使得沿折线OAP比沿折线OBP的路程更近,求p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列满足,且.

1)求

2)求数列的通项公式;

3)令,求数列的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在直角坐标系中,点到抛物线的准线的距离为,点上的定点,上的两个动点,且线段的中点在线段.

1)抛物线的方程及的值;

2)当点分别在第一、四象限时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,且点在椭圆上.

1)求椭圆的标准方程;

2)当点在椭圆的图像上运动时,点在曲线上运动,求曲线的轨迹方程,并指出该曲线是什么图形;

3)过椭圆上异于其顶点的任意一点作曲线的两条切线,切点分别为不在坐标轴上),若直线轴,轴上的截距分别为试问:是否为定值?若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=sinxcosxcos2x+1

1)求fx)的最小正周期和最大值,并写出取得最大值时x的集合;

2)将fx)的函数图象向左平移φφ0)个单位后得到的函数gx)是偶函数,求φ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】狄利克雷函数为F(x).有下列四个命题:①此函数为偶函数,且有无数条对称轴;②此函数的值域是;③此函数为周期函数,但没有最小正周期;④存在三点,使得△ABC是等腰直角三角形,以上命题正确的是(  )

A.①②B.①③C.③④D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为.

(Ⅰ)求椭圆的方程;

(Ⅱ)设直线过点且与椭圆相交于两点.过点作直线的垂线,垂足为.证明直线轴上的定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司要在一条笔直的道路边安装路灯,要求灯柱AB与底面垂直,灯杆BC与灯柱AB所在的平面与道路走向垂直,路灯C采用锥形灯罩,射出的管线与平面ABC部分截面如图中阴影所示,路宽AD=24米,设

(1)求灯柱AB的高h(用表示);

(2)此公司应该如何设置的值才能使制作路灯灯柱AB和灯杆BC所用材料的总长度最小?最小值为多少?

查看答案和解析>>

同步练习册答案