精英家教网 > 高中数学 > 题目详情
17.已知集合A={x|x2-2x+3=0},B={x|ax-1=0}.
(1)若A∩B={-1},求实数a的值;
(2)若A∩B=B,求实数a的值.

分析 (1)化简集合A,根据交集的定义得出-1∈B,解方程求出a的值;
(2)根据A∩B=B得出B⊆A,讨论B=∅和B≠∅时,求出对应的a值.

解答 解:A={x|x2-2x+3=0}={-1,3},
(1)∵A∩B={-1},∴-1∈B,
∴-a-1=0,
解得a=-1;
(2)∵A∩B=B,∴B⊆A
当B=∅时,方程ax-1=0无解,故a=0;
当B≠∅时,则$B=\left\{{\frac{1}{a}}\right\}$,
若$\frac{1}{a}=-1$,即a=-1;
若$\frac{1}{a}=3$,则$a=\frac{1}{3}$;
综上所述,a的值为0,-1或$\frac{1}{3}$.

点评 本题考查了集合的化简与运算问题,也考查了交集的定义与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知动点P到点F(1,0)的距离等于它到直线l1:x=-1的距离
(Ⅰ)求点P的轨迹C的方程;
(Ⅱ)若点M,N是直线l1上两个不同的点,且△PMN的内切圆方程为x2+y2=1,直线PF的斜率为k,求$\frac{|k|}{|MN|}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=ex-3-x-ax2
(Ⅰ)当a=0时,求f(x)的单调区间;
(Ⅱ)当x≥0时,f(x)≥-2,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点.从M点测得A点的俯角∠NMA=30°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°;已知山高BC=200m,则山高MN=(  )
A.300mB.200$\sqrt{2}$mC.200$\sqrt{3}$mD.300$\sqrt{2}$m

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=blnx.
(Ⅰ)当b=1时,若函数F(x)=f(x)+ax2-x在其定义域上为增函数,求a的取值范围;
(Ⅱ)若在[1,e]上存在x0,使得x0-f(x0)<-$\frac{1+b}{x_0}$成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列四个命题中,正确的个数是(  )
①命题“?x∈R,x2-x>0”的否定是“?x∈R,x2-x<0”;
②命题“若a>b,则2a>2b-1”的否命题为“若a≤b,则2a≤2b-1”,
③“命题p∨q为真”是“命题p∧q为真”的充分不必要条件;
④在公差为d的等差数列{an}中,a1=2,a1,a3,a4成等比数列,则公差d为$-\frac{1}{2}$.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在数列{an}中,a1=1,an+1=2an+1,则a10=(  )
A.1023B.1024C.1025D.511

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知f(x)=$\left\{\begin{array}{l}{{x}^{2},x<0}\\{{2}^{x}-2,x≥0}\end{array}\right.$,则f(f(-2))=14.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知在四棱锥P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分别是线段AB、BC的中点.
(1)证明:PF⊥FD
(2)若PA=1,求点A到平面PFD的距离.

查看答案和解析>>

同步练习册答案